∫的微分公式是什么?

积分公式表:1、∫kdx=kx+C(k是常数)。2、∫xdx=+1+C,(≠1)+1dx。3、∫=ln|x|+Cx1。4、∫dx=arctanx+C21+x1。5、∫dx=arcsinx+C21x。6、∫cosxdx=sinx+C。7、∫sinxdx=cosx+C。8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。9、∫secxtanxdx=secx+C。10、∫cscxcotxdx=cscx+C。
∫的微分公式是什么?
积分公式表:
1、∫kdx=kx+C(k是常数)。

2、∫xdx=+1+C,(≠1)+1dx。

3、∫=ln|x|+Cx1。

4、∫dx=arctanx+C21+x1。

5、∫dx=arcsinx+C21x。

6、∫cosxdx=sinx+C。

7、∫sinxdx=cosx+C。

8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。

9、∫secxtanxdx=secx+C。

10、∫cscxcotxdx=cscx+C。

11、∫axdx=+Clna。

12、[∫f(x)dx]'=f(x)。

13、∫f'(x)dx=f(x)+c。

14、∫d(f(x))=f(x)+c。

15、∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c。

16、∫secxdx=ln|secx+tanx|+c。

17、∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c。

18、∫1/√(a^2-x^2)dx=arcsin(x/a)+c。

19、∫sec^2xdx=tanx+c。

20、∫shxdx=chx+c。

21、∫chxdx=shx+c。

22、∫thxdx=ln(chx)+c。

23、令u=1x2,即∫u=23u+C3312122=3u+C=3(1x)+C12d(1x)2。

24、令u=cosx=2,即∫u=22+C=u+C=cosx+C。

公式种类:

1、不定积分
设f(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。

注:∫f(x)dx+c1=∫f(x)dx+c2,不能推出c1=c2。
2、定积分
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。
2023-11-27
mengvlog 阅读 7 次 更新于 2025-08-21 15:21:44 我来答关注问题0
  • 积分公式表:1、∫kdx=kx+C(k是常数)。2、∫xdx=+1+C,(≠1)+1dx。3、∫=ln|x|+Cx1。4、∫dx=arctanx+C21+x1。5、∫dx=arcsinx+C21x。6、∫cosxdx=sinx+C。7、∫sinxdx=cosx+C。8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。9、∫secxtanxdx=secx+C。10、∫cscxcotxdx=cscx+C。

  •  baochuankui888 积分的微分公式是什么?

    =∫(0->x) f(t)dt

  •  轮看殊O 微分d'(x) dx等于什么?

    微分d[f(x)]=f'(x)dx 也就是说∫f'(x)dx=∫d[f(x)]而∫dx = x+C(任意常数)所以∫f'(x)dx=∫d[f(x)]=f(x)+C 微分(导数)和积分是逆运算

  •  是时候使出我的毕生绝学了 高数常用凑微分公式?

    亲亲,高数常用凑微分公式有 1、∫0dx=c 2、∫x^udx=(x^u+1)/(u+1)+c 3、∫1/xdx=ln|x|+c 4、∫a^xdx=(a^x)/lna+c 5、∫e^xdx=e^x+c 6、∫sinxdx=-cosx+c 7、∫cosxdx=sinx+c 8、∫1/(cosx)^2dx=tanx+c 9、∫1/(sinx)^2dx=-cotx+c 学习高数 不定积分:不...

  •  唔哩头条 积分的微分是什么?

    6. 当函数 f(x) 连续时,其原函数一定存在,这是微积分学的一个基本定理。7. 积分的基本公式包括:1. ∫0dx = c 2. ∫x^udx = (x^u + 1)/(u + 1) + c 3. ∫1/xdx = ln|x| + c 4. ∫a^xdx = (a^x)/lna + c 5. ∫e^xdx = e^x + c 6. ∫sinxdx = -...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部