积分公式表:1、∫kdx=kx+C(k是常数)。2、∫xdx=+1+C,(≠1)+1dx。3、∫=ln|x|+Cx1。4、∫dx=arctanx+C21+x1。5、∫dx=arcsinx+C21x。6、∫cosxdx=sinx+C。7、∫sinxdx=cosx+C。8、∫sec∫csc2xdx=tanx+Cxdx=cotx+C2。9、∫secxtanxdx=secx+C。10、∫cscxcotxdx=cscx+C。
=∫(0->x) f(t)dt
微分d[f(x)]=f'(x)dx 也就是说∫f'(x)dx=∫d[f(x)]而∫dx = x+C(任意常数)所以∫f'(x)dx=∫d[f(x)]=f(x)+C 微分(导数)和积分是逆运算
亲亲,高数常用凑微分公式有 1、∫0dx=c 2、∫x^udx=(x^u+1)/(u+1)+c 3、∫1/xdx=ln|x|+c 4、∫a^xdx=(a^x)/lna+c 5、∫e^xdx=e^x+c 6、∫sinxdx=-cosx+c 7、∫cosxdx=sinx+c 8、∫1/(cosx)^2dx=tanx+c 9、∫1/(sinx)^2dx=-cotx+c 学习高数 不定积分:不...
6. 当函数 f(x) 连续时,其原函数一定存在,这是微积分学的一个基本定理。7. 积分的基本公式包括:1. ∫0dx = c 2. ∫x^udx = (x^u + 1)/(u + 1) + c 3. ∫1/xdx = ln|x| + c 4. ∫a^xdx = (a^x)/lna + c 5. ∫e^xdx = e^x + c 6. ∫sinxdx = -...