等比公式:a (n+1)/an=q (n∈N)。通项公式:an=a1×q^(n-1),推广式:an=am×q^(n-m); 求和公式:Sn=n*a1 (q=1),Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1),(q为比值,n为项数)。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个...
(1)等比数列的通项公式是:An=A1×q^(n-1)。若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2) 任意两项am,an的关系为an=am·q^(n-m)。(3)从等比数列的定义、通项公式、前n项和公式可以...
一、等比数列求和公式推导 由等比数列定义 a2=a1*q a3=a2*q a(n-1)=a(n-2)*q an=a(n-1)*q 共n-1个等式两边分别相加得 a2+a3+...+an=[a1+a2+...+a(n-1)]*q 即 Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q 当q≠1时,Sn=(a1-an*q)/(1-q) (n≥2)当n=1时也...
等比所有常用公式如下:1、等比数列通项公式:第 n 项:aₙ = a₁ * r^(n-1),其中,a₁ 是首项,r 是公比。2、等比数列前 n 项和公式:前 n 项和:Sₙ = a₁ * (r^n - 1) / (r - 1),其中,a₁ 是首项,r 是公比。3、等比数列求...
常见8个数列的通项公式是等差数列、等比数列、一阶数列、二阶数列、累加法、累乘法、构造法、连加相减法。分别如下:等差数列:对于一个数列{ an},如果任意相邻两项之差为一个常数,那么该数列为等差数列,且称这一定值差为公差,记为 d ;从第一项 a1到第n项 an的总和,记为Sn。通项公式为:...