牛顿莱布尼兹公式使用的条件

一、牛顿莱布尼兹公式 牛顿-莱布尼茨公式(Newton-Leibniz-formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-莱布尼茨公式的内容是一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量。牛顿在1666年写的《流数简论》中...
牛顿莱布尼兹公式使用的条件
牛顿莱布尼兹公式使用的条件如下:
一、牛顿莱布尼兹公式
牛顿-莱布尼茨公式(Newton-Leibniz-formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
牛顿-莱布尼茨公式的内容是一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。

二、发展简史
1670年,英国数学家伊萨克·巴罗在他的著作《几何学讲义》中以几何形式表达了切线问题是面积问题的逆命题,这实际是牛顿-莱布尼茨公式的几何表述。
1666年10月,牛顿在它的第一篇微积分论文《流数简论》中解决了如何根据物体的速度求解物体的位移这一问题,并讨论了如何根据这种运算求解曲线围成的面积,首次提出了微积分基本定理。

三、应用
牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可以计算曲线的弧长,平面曲线围成的面积以及空间曲面围成的立体体积,这在实际问题中有广泛的应用,例如计算坝体的填筑方量。
牛顿-莱布尼茨公式在物理学上也有广泛的应用,计算运动物体的路程,计算变力沿直线所做的功以及物体之间的万有引力。牛顿-莱布尼茨公式促进了其他数学分支的发展,该公式在微分方程,傅里叶变换,概率论,复变函数等数学分支中都有体现。
牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。牛顿-莱布尼茨公式还可以推广到二重积分与曲线积分,从一维推广到多维。
2023-11-05
mengvlog 阅读 7 次 更新于 2025-08-21 02:54:56 我来答关注问题0
  •  府沛槐24 牛顿莱布尼茨公式使用条件

    牛顿莱布尼茨公式使用条件如下:1、被积函数在积分区间上连续。2、积分区间是有限闭区间,且无穷远点不是极点。3、积分区间两端的函数值有限。4、积分区间在函数的定义域内。牛顿-莱布尼茨公式,通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-莱布尼茨公式的内...

  •  武汉誉祥科技 牛顿莱布尼茨公式使用的条件

    使用条件:若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且∫(a→daob)f(x)dx=F(b)-F(a),则可以用牛顿莱布尼兹公式。牛顿-莱布尼茨公式(Newton-Leibnizformula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-...

  •  翡希信息咨询 牛顿莱布尼兹公式成立条件

    牛顿莱布尼兹公式成立的条件是被积函数f在积分区间[a,b]内连续,且存在原函数F。具体来说:被积函数在积分区间内连续:这意味着函数f在区间[a,b]上没有断点或跳跃点,其图像是平滑连续的。这是保证积分运算能够顺利进行的基础。存在原函数:原函数F是满足F’ = f的函数。换句话说,f必须是...

  •  翡希信息咨询 牛顿莱布尼兹公式成立条件

    牛顿莱布尼兹公式成立条件如下:被积函数f在积分区间[a,b]内连续:这意味着函数f在区间[a,b]上没有断点、跳跃或无穷间断点,保证了函数在该区间上的平滑性。存在原函数F:原函数F是f的不定积分,即F’ = f。原函数的存在性保证了可以通过求差的方式计算出f在区间[a,b]上的定积分值。...

  •  宸辰游艺策划 牛顿莱布尼兹公式成立条件

    牛顿莱布尼兹公式成立条件是被积函数f(x)在积分区间[a,b]内连续,且存在原函数F(x)。牛顿莱布尼茨公式也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。它的内容是一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量。牛顿在1666年...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部