所以,圆台的侧面积:S=1/2*2πr2*(a+l)-1/2*2πr1*a=π(r1+r2)l=π(r1+r2)√[(r2-r1)^2+h^2]
圆台的侧面积 S=π(r1+r2)L 其中r1,r2分别为上、下底半径,L为母线 如图 左边为圆台补成圆锥的图;右边为沿该圆锥的母线(也即是圆台的母线)剪开后得到的扇形图。图中阴影部分即是圆台的侧面积 左图中 设上面的小圆锥的母线长为 l 那么,根据相似三角形可以得到:r1/r2=l/(l+L)所以,l...
这个过程可以用一个公式来表示:侧面积=母线×底面周长。这个公式中的母线是指从圆台的一个截面到另一个截面的最长的直线段,底面周长是指圆台底面的周长。这个公式实际上是根据圆台的形状特点得出的,它反映了圆台侧面积与母线和底面半径之间的关系。影响圆台侧面积的因素:1、母线长度:母线是从圆台...
圆台的侧面积 S = π R L1-π r L2 = π [ R( L1-L2) + L2(R-r) ] = π ( R+ r) L
设圆台r1和r2是两个底面的半径,圆台的高为:h,l是母线长,则母线长为l=√[(r2-r1)^2+h^2]下底:下口径的周长=2πr2,上底:上口径的周长=2πr1,设小扇形的半径为a,则:r2/r1=(a+l)/a 所以,a=rl*l/(r2-r1) 所以,圆台的侧面积: S=1/2*2πr2*(a+l)-1/2*2πr1*...