二次函数顶点公式以及对称轴公式推导方法

二次函数顶点坐标公式推导:一般式:y=ax^2+bx+c(a、b、c为常数,a≠0)顶点式:y=a(x-h)^2+k 抛物线的顶点P(h、k)于二次函数y=ax^2+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2)/4a)推导:y=ax^2+bx+c y=a(x^2+bx/a+c/a)y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/...
二次函数顶点公式以及对称轴公式推导方法
(-b/2a,4ac-b^2/4a)用配方法配成顶点式2009-11-17
二次函数顶点坐标公式推导:
一般式:y=ax^2+bx+c(a、b、c为常数,a≠0)
顶点式:y=a(x-h)^2+k
抛物线的顶点P(h、k)
于二次函数y=ax^2+bx+c
其顶点坐标为 (-b/2a,(4ac-b^2)/4a)
推导:
y=ax^2+bx+c
y=a(x^2+bx/a+c/a)
y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)
y=a(x+b/2a)^2+c-b^2/4a
y=a(x+b/2a)^2+(4ac-b^2)/4a
对称轴x=-b/2a
顶点坐标(-b/2a,(4ac-b^2)/4a)
y=ax^2+bx+c
=a(x^2+bx/a)+c
=a[x^2+2*(b/2a)*x+(b/2a)^2-(b/2a)^2]+c
=a(x+b/2a)^2-a*b^2/4a^2+c
=a(x+b/2a)^2-b^2/4a+4ac/4a
=a(x+b/2a)^2+(4ac-b^2)/(4a)
=a[x-(-b/2a)]^2+(4ac-b^2)/(4a)
所以顶点是:[-b/2a,(4ac-b^2)/(4a)]
对称轴是x=-b/2a
扩展资料:
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a
当a>0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号,即a>0,b>0或a
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
2020-12-25
y=ax^2+bx+c
=a(x^2+bx/a)+c
=a[x^2+2*(b/2a)*x+(b/2a)^2-(b/2a)^2]+c
=a(x+b/2a)^2-a*b^2/4a^2+c
=a(x+b/2a)^2-b^2/4a+4ac/4a
=a(x+b/2a)^2+(4ac-b^2)/(4a)
=a[x-(-b/2a)]^2+(4ac-b^2)/(4a)
所以顶点是:[-b/2a,(4ac-b^2)/(4a)]
对称轴是x=-b/2a
扩展资料
决定位置因素
一次项系数b和二次项系数a共同决定对称轴的位置。
当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a
当a>0,与b异号时(即ab0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当对称轴在y轴左时,a与b同号(即a>0,b>0或a
事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
2020-12-26
  二次函数顶点坐标公式推导

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k

  [抛物线的顶点P(h,k)]

  对于二次函数y=ax^2+bx+c

  其顶点坐标为 (-b/2a,(4ac-b^2)/4a)

  推导:

  y=ax^2+bx+c y=a(x^2+bx/a+c/a) y=a(x^2+bx/a+b^2/4a^2+c/a-b^2/4a^2)
y=a(x+b/2a)^2+c-b^2/4a y=a(x+b/2a)^2+(4ac-b^2)/4a

  对称轴x=-b/2a

  顶点坐标(-b/2a,(4ac-b^2)/4a)

  y=ax^2+bx+c
=a(x^2+bx/a)+c
=a[x^2+2*(b/2a)*x+(b/2a)^2-(b/2a)^2]+c
=a(x+b/2a)^2-a*b^2/4a^2+c
=a(x+b/2a)^2-b^2/4a+4ac/4a
=a(x+b/2a)^2+(4ac-b^2)/(4a)
=a[x-(-b/2a)]^2+(4ac-b^2)/(4a)
所以顶点是[-b/2a,(4ac-b^2)/(4a)]
对称轴是x=-b/2a2015-10-27
二次函数y=ax²+bx+c的对称轴公式是:x=-b/(2a);
顶点坐标公式[-b/(2a),(4ac-b²)/(4a)].2020-03-03
433332018-04-24
mengvlog 阅读 6 次 更新于 2025-08-20 23:33:16 我来答关注问题0
  •  宜美生活妙招 二次函数对称轴和顶点坐标公式是什么

    二次函数的对称轴公式为直线$x = -frac{b}{2a}$,顶点坐标公式为$left( -frac{b}{2a}, frac{4ac - b^2}{4a} right)$。对称轴公式解析:对于二次函数$y = ax^2 + bx + c$,其对称轴的公式为$x = -frac{b}{2a}$。这个公式是通过求解二次函数与x轴的两个交点,然后取这两个...

  •  深空游戏 二次函数知道对称轴怎么求顶点

    二次函数y=ax^2+bx+c,其对称轴公式为x=-b/(2a)。二次函数的顶点坐标为(-b/2a,(4ac-b^2)/4a)。在交点式y=a(x-x₁)(x-x₂)中,仅限于与x轴有交点A(x₁ ,0)和 B(x₂,0)的抛物线。对于抛物线的顶点P(h,k),顶点式表达为y=a(x-h)^2+k。

  •  98聊教育 二次函数对称轴和顶点坐标公式是什么?

    设二次函数的解析式是y=ax^2+bx+c,则二次函数的对称轴为直线x=-b/2a,顶点横坐标为-b/2a,顶点纵坐标为(4ac-b^2)/4a。1、首先令二次函数解析式为零,求出两个解,即二次函数图像与x轴的两个交点,如下图所示:2、由两个交点相加除2得到对称轴-b/2a,如下图所示:3、将对称轴坐标...

  •  4uoik_4747 二次函数的对称轴和顶点坐标

    二次函数的对称轴和顶点坐标取决于函数的标准形式,对于一般形式为f(x)=ax^2+bx+c的二次函数。一、对称轴 对称轴的定义:对称轴是二次函数图像的一个特殊直线,它将图像分成两个对称的部分。对称轴的求解:对称轴与抛物线的对称性相关,它始终垂直于x轴。对称轴的方程可以通过求解函数的零点或使用...

  •  宜美生活妙招 二次函数顶点坐标公式的顶点坐标,对称轴

    顶点坐标:对于二次函数$y = ax^2 + bx + c$,其顶点坐标为$$。顶点式表示为$y = a^2 + k$,其中顶点$P$的坐标为$$。在一般式中,$h = frac{b}{2a}$,$k = frac{4acb^2}{4a}$。对称轴:二次函数的图像是一条抛物线,它关于一条直线对称,这条直线就是对称轴。对于二次函数...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部