高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,展开的a^2+b^...
(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)四、不等式定理口诀 解不等...
2、绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b|。| |a|-|b| |≤|a+b|≤|a|+|b|。3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n...
基本不等式公式:1、加减不等式:若ab,则a+c>b+c。2、乘法不等式:若a,b,c>0(或c0),则ac>bc(或ac
1、基本不等式:√(ab)≤(a+b)/2,那么可以变为a^2-2ab+b^2≥0,a^2+b^2≥2ab,ab≤a与b的平均数的平方。2、绝对值不等式公式:||a|-|b||≤|a-b|≤|a|+|b|,||a|-|b||≤|a+b|≤|a|+|b|。3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+...