高中4个基本不等式链:√[(a²+b²)/2]≥(a+b)/2≥√ab≥2/(1/a+1/b)。基本不等式 基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。不等式定理口诀 解不等式的途径,利用函数的性质。对指无理不等...
调整系数。有时候求解两个式子之积的最大值时,需要这两个式子之和为常数,但是很多时候并不是常数,这时候需要对其中某些系数进行调整,以便使其和为常数。三、基本不等式中常用公式 (1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)(2...
考研七个基本不等式是如下:一、基本不等式 √(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。二、绝对值不等式公式 | |a|-|b| |≤|a-b|≤|a|+|b|。| |a|-|b| |≤|a+b|≤|a|+|b|。三、柯西不等式 设a1,a2,an,b...
基本不等式公式:1、加减不等式:若ab,则a+c>b+c。2、乘法不等式:若a,b,c>0(或c0),则ac>bc(或ac
对于正数a、b.基本不等式公式都包含:1、A=(a+b)/2,叫做a、b的算术平均数 2、 G=√(ab),叫做a、b的几何平均数 3、S=√[(a^2+b^2)/2],叫做a、b的平方平均数 4、H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数