等比数列的前n项和 Sn、S2n-Sn、S3n-S2n成等比数列,公比为q^n。证明如下:设等比数列{an}的公比为q,an=a1q^(n-1)am=a1q^(m-1)两式相除得an/am=q^(n-m),∴an=amq^(n-m)。S2n=a1+a2+...+an+a(n+1)+a(n+2)+...+a2n=Sn+(a1q^n+a2q^n+...+anq^n)=Sn+(a1+...
等比数列前n项积公式为:Tn=a1*a2*a3*...*an=a1*q^(n-1)*an。等比数列中,任意项的奇数项的符号相同,偶数项的符号相反。等比数列中,任意两项的积等于这两项的商的相反数。等比数列中,任意一项的倒数的和等于这一项与项数的乘积。等比数列中,任意一项的n次方等于这一项与项数的乘积。等...
等比数列的前n项和公式可以表示为 Sn = a1(1 - q^n) / (1 - q),也可以写作 Sn = a1(q^n - 1) / (q - 1)。从这两个公式中,我们可以发现当首项a1大于0且公比q大于1时,数列的前n项和Sn是递增的。进一步分析可以得知,如果首项a1大于0且公比q在0到1之间(即0 < q < 1)...
对于等比数列,若首项是 a,公比是 r,则第 n 项可表示为 a * r^(n-1)。首先,我们计算等比数列的前 n 项和 Sn:Sn = a + a * r + a * r^2 + ... + a * r^(n-1)然后,计算等比数列的前 2n 项和 S2n 和前 3n 项和 S3n:S2n = a + a * r + a * r^2 + ....
等比数列求和公式:记数列{an}为等比数列,公比为q,其前n项和为Sn,则有:Sn=n×a1 (q=1)Sn=a1(1-qⁿ)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)1、等比级数若收敛,则其公比q的绝对值必小于1。2、故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(...