华土里第二公式:∫(0→π/2)[(cos t)^n]dt=∫(0→π/2)[(sin t)^n]dt =(n-1)!!/n!!(n为正奇数)=π(n-1)!!/(2(n!!))(n为正偶数)
推广公式 当 m =1 m=1 m=1 时,该公式退化为原华里士公式,Wallis(华里士)公式是关于圆周率的无穷乘积的公式,但Wallis公式中只有乘除运算,连开方都不需要,形式上十分简单。虽然Wallis公式对π的近似计算没有直接影响,但是在导出Stirling公式中起到了重要作用。