等比数列求和公式:记数列{an}为等比数列,公比为q,其前n项和为Sn,则有:Sn=n×a1 (q=1)Sn=a1(1-qⁿ)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)1、等比级数若收敛,则其公比q的绝对值必小于1。2、故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(...
等比数列的前n项和 Sn、S2n-Sn、S3n-S2n成等比数列,公比为q^n。证明如下:设等比数列{an}的公比为q,an=a1q^(n-1)am=a1q^(m-1)两式相除得an/am=q^(n-m),∴an=amq^(n-m)。S2n=a1+a2+...+an+a(n+1)+a(n+2)+...+a2n=Sn+(a1q^n+a2q^n+...+anq^n)=Sn+(a1+...
对于等比数列,若首项是 a,公比是 r,则第 n 项可表示为 a * r^(n-1)。首先,我们计算等比数列的前 n 项和 Sn:Sn = a + a * r + a * r^2 + ... + a * r^(n-1)然后,计算等比数列的前 2n 项和 S2n 和前 3n 项和 S3n:S2n = a + a * r + a * r^2 + ....
等比级数的求和公式可以表述为:设等比数列的首项为a1,公比为q(|q|<1),则该等比数列的前n项和Sn=a1(1-q^n)/(1-q)。随着n的无限增大,q^n趋向于0,因此,等比级数的和为a1/(1-q)。值得注意的是,等比级数的求和公式只在公比的绝对值小于1时适用。若公比的绝对值大于或等于1,级数将...
等比数列前n项和公式:Sn =a1(1-q^n)/(1-q)。等比数列公式就是在数学上求一定数量的等比数列的和的公式。各项均为正数的等比数列各项取同底数数后构成一个等差数列。反之以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。