不等式有哪些公式?

1、基本不等式:√(ab)≤(a+b)/2 那么可以变为 a^2-2ab+b^2 ≥ 0 a^2+b^2 ≥ 2ab ab≤a与b的平均数的平方 2、绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b| | |a|-|b| |≤|a+b|≤|a|+|b| 3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(...
不等式有哪些公式?
1、基本不等式:
√(ab)≤(a+b)/2
那么可以变为 a^2-2ab+b^2 ≥ 0
a^2+b^2 ≥ 2ab
ab≤a与b的平均数的平方
2、绝对值不等式公式:
| |a|-|b| |≤|a-b|≤|a|+|b|
| |a|-|b| |≤|a+b|≤|a|+|b|

3、柯西不等式:
设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号。
4、三角不等式
对于任意两个向量 、 ,其加强的不等式

这个不等式也可称为向量的三角不等式。
5、四边形不等式
如果对于任意的a1≤a2<b1≤b2,
有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],
那么m[i,j]满足四边形不等式。
参考资料:百度百科-不等式公式
2023-10-12
mengvlog 阅读 7 次 更新于 2025-08-18 12:49:45 我来答关注问题0
  •  素颜微笑ii 基本不等式链有哪些?

    (2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)四、不等式定理口诀 解不等...

  • 1、基本不等式:√(ab)≤(a+b)/2 那么可以变为 a^2-2ab+b^2 ≥ 0 a^2+b^2 ≥ 2ab ab≤a与b的平均数的平方 2、绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b| | |a|-|b| |≤|a+b|≤|a|+|b| 3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有(a1b...

  •  帐号已注销 求基本不等式四个式子

    对于正数a、b.基本不等式公式都包含:1、A=(a+b)/2,叫做a、b的算术平均数 2、 G=√(ab),叫做a、b的几何平均数 3、S=√[(a^2+b^2)/2],叫做a、b的平方平均数 4、H=2/(1/a+1/b)=2ab/(a+b)叫做调和平均数

  •  逆天阿义 重要不等式公式四个

    2、绝对值不等式公式:对于任意实数a和b,有||a|-|b||≤|a-b|≤|a|+|b|,这个不等式的证明方法可利用向量,把a、b看作向量,利用三角形两边之差小于第三边,两边之和大于第三边的性质。3、柯西不等式:设a1,a2,至an;b1,b2,至bn均是实数,且a1≥a2≥a3≥至an,b1≥b2≥b3≥至b...

  • 如下图:基本不等式是主要应用于求某些函数的最值及证明的不等式。其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。在使用基本不等式时,要牢记“一正”“二定”“三相等”的七字真言。“一正”就是指两个式子都为正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部