高中6个基本不等式的公式有哪些?

1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。2、基本不...
高中6个基本不等式的公式有哪些?
高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。

1、基本不等式a^2+b^2≧2ab:
针对任意的实数a,b都成立,当且仅当a=b时,等号成立。
证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。
它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。

2、基本不等式√ab≦(a+b)/2:
这个不等式需a,b均大于0,等式才成立,当且仅当a=b时等号成立。
证明过程:要证(a+b)/2≧√ab,只证a+b≧2√ab,只要能证(√a-√b)^2≧0,明显(√a-√b)^2≧0是成立的。
它的几何意义是圆内的直径大于被弦截后得到直径的2个部分的乘积的二倍。

3、b/a+a/b≧2:
这个不等式的要求ab>0,当且仅当a=b时等号成立,其实就是常说的说a,b可以同时为正数,也可同时为负数。
证明的过程:b/a+a/b(a^2+b^2)/ab≧2,只要能证a^2+b^2≧2ab就可以。

4、a^3+b^3+c^3≧3abc:
基本不等式的拓展公式,a,b,c都是正数。

5、(a+b+c)/3≧³√abc:
a,b,c都是正数,当且仅当a=b=c时等号成立。

6、柯西不等式。
高一数学基本不等式公式:
假设a,b是正数,既然如此那,(a+b)/2≥(根号下ab),当且仅当a=b时,等号成立,我们称上面说的不等式为基本不等式。
若a,b∈R,则a平方+b平方≥2ab或ab≤(a平方+b平方)/2。
若a,b∈R,则(a平方+b平方)/2≥[(a+b)/2]的平方。
若a,b∈R※,则a+b=2(根号ab) 或ab≤[(a+b)/2]的平方。
2023-08-15
mengvlog 阅读 7 次 更新于 2025-08-18 12:25:06 我来答关注问题0
  • 高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,展开的a^2+b^...

  •  校易搜全知道 基本不等式有哪些?

    基本不等式公式:基本不等式公式的变形:上述7式中,当a=b时,等号成立 常见题型 ↓ 例题:当0<x<4时,求函数y=x(8-2x)的最大值 解析:如果把x前面的系数变成2,那么2x+(8-2x)=8,为常数(和为定值),这样就可以用基本不等式了。例题2:解析:...

  •  小陈子老师加油哦 数学不等式基本公式高中

    高中数学不等式公式有基本不等式、绝对值不等式公式、柯西不等式、四边形不等式。一般地,用纯粹的大于号“>”、小于号“

  •  生活达人北倾1 柯西不等式6个基本公式是什么?

    柯西不等式6个基本公式如下:1、二维形式:(a^2+b^2)(c^2+d^2)≥(ac+bd)^2。等号成立条件:ad=bc2、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]。等号成立条件:ad=bc3、向量形式:|α||β|≥|α·β|,α=(a1,a2,…,an),β=...

  • 均值不等式6个基本公式如下:关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部