高等数学中所有等价无穷小的公式1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-...
常用的等价无穷小的替换公式如下:当x趋近于0时:e^x-1~x;ln(x+1)~x;sinx~x;arcsinx~x;tanx~x;arctanx~x;1-cosx~(x^2)/2;tanx-sinx~(x^3)/2;(1+bx)^a-1~abx。
1. arcsinx ~ x:这是正弦函数的反函数的等价无穷小,表示当x趋向于0时,arcsinx与x的比值趋向于1。2. tanx ~ x:这是正切函数的等价无穷小,适用于x趋向于0或者π的情况。3. e^x—1 ~ x:这是自然指数函数的等价无穷小,表明当x趋向于0时,e^x减去1与x的比值趋向于1。4. ln(x+1...
等价无穷小替换公式如下:1、sinx~x 2、tanx~x 3、arcsinx~x 4、arctanx~x 5、1-cosx~(1/2)*(x^2)~secx-1 6、(a^x)-1~x*lna ((a^x-1)/x~lna)7、(e^x)-1~x 8、ln(1+x)~x 9、(1+Bx)^a-1~aBx 10、[(1+x)^1/n]-1~(1/n)*x 11、loga(1+x)~x...
等价无穷小替换公式如下 :以上各式可通过泰勒展开式推导出来。等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。