等价无穷小替换公式?

高等数学中所有等价无穷小的公式1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-...
等价无穷小替换公式?
高等数学中所有等价无穷小的公式1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-1~xlna (x→0)11、e^x-1~x (x→0)12、ln(1+x)~x (x→0)13、(1+Bx)^a-1~aBx (x→0)14、[(1+x)^1/n]-1~1/nx (x→0)15、loga(1+x)~x/lna(x→0)补充等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。常用等价无穷小公式是什么常用等价无穷小公式=1-cosx。等价无穷小是无穷小之间的一种关系,指的是在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。两个重要极限是什么1、第一个重要极限的公式lim sinx / x = 1 (x->0)当x→0时,sin / x的极限等于1。特别注意的是x→∞时,1 / x是无穷小,根据无穷小的性质得到的极限是0。2、第二个重要极限的公式lim (1+1/x) ^x = e(x→∞) 当 x → ∞ 时,(1+1/x)^x的极限等于e;或当 x → 0 时,(1+x)^(1/x)的极限等于e。2024-08-25
mengvlog 阅读 8 次 更新于 2025-08-21 06:22:10 我来答关注问题0
  • 高等数学中所有等价无穷小的公式1、e^x-1~x (x→0)2、 e^(x^2)-1~x^2 (x→0)3、1-cosx~1/2x^2 (x→0)4、1-cos(x^2)~1/2x^4 (x→0)5、sinx~x (x→0)6、tanx~x (x→0)7、arcsinx~x (x→0)8、arctanx~x (x→0)9、1-cosx~1/2x^2 (x→0)10、a^x-...

  •  闲闲谈娱乐 等价无穷小替换公式如何推导的?

    等价无穷小替换公式如下 :(如图)可通过泰勒展开式推导出来,等价无穷小是无穷小的一种,也是同阶无穷小。从另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。求极限时,使用等价无穷小的条件:1、被代换的量,在取极限的时候极限值为0;2、被代换的量,作为被乘或者被...

  • 4. ln(x+1)~x:这是自然对数的等价无穷小,当x趋向于0时,ln(x+1)与x的比值趋向于1。5. arctanx ~ x:这是正切函数的反函数的等价无穷小,适用于x趋向于0的情况。6. 1—cosx ~ (x^2)/2:这是余弦函数的等价无穷小,表示当x趋向于0时,1减去cosx与x的平方除以2的比值趋向于1。

  • 常用等价无穷小替换公式表及证明 一、常用等价无穷小替换公式表及证明 当x趋近于0时:e^x-1~x、ln(x+1)~x、sinx~x、arcsinx~x、tanx~x、arctanx~x、1-cosx~ (x^2)/2、tanx-sinx~(x^3)/2、(1+bx)^a-1~abx。二、扩展知识 1、无穷小 无穷小量是数学分析中的一个概念,在经典的...

  •  分享社会民生 高数中,等价无穷小的替换公式是如何的?

    等价无穷小的替换公式如下:当x趋近于0时:e^x-1~x;ln(x+1)~x;sinx~x;arcsinx~x;tanx~x;arctanx~x;1-cosx~(x^2)/2;tanx-sinx~(x^3)/2;(1+bx)^a-1~abx。

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部