0。因此 ln(1 + x) > x - x^2/2。" />

泰勒公式的泰勒展开式怎样表示的?

y = ln (1 + x)的泰勒展开式为:y = ln (1 + x) = x - x^2/2 + x^3/3 - x^4/4 + 。当 |x| < 1="" 时,ln="" (1="" +="" x)="" -(x="" -="" x^2/2)="x^3/3" -="" x^4/4="" +="" .=> 0。因此 ln(1 + x) > x - x^2/2。
泰勒公式的泰勒展开式怎样表示的?
ln(1-x)的泰勒级数展开是:ln(1-x)=ln=Σ(-1)^(n+1)(-x)^n/n=Σx^n/n,-1≤x。泰勒展开f(x)=f(0)+f′(0)x+f″(0)x²。
泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

例如:
y = ln (1 + x)的泰勒展开式为:
y = ln (1 + x) = x - x^2/2 + x^3/3 - x^4/4 + 。
当 |x| < 1="" 时,ln="" (1="" +="" x)="" -(x="" -="" x^2/2)="x^3/3" -="" x^4/4="" +="" .=> 0。
因此 ln(1 + x) > x - x^2/2。
2022-09-28
mengvlog 阅读 21 次 更新于 2025-10-08 14:41:54 我来答关注问题0
萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部