圆台侧面积公式推导过程:S=∏(r1+r2)L,r1是上底半径,r2是下底半径,L是母线。假设一张圆台已经被补成是圆锥的图,沿着这个圆锥的母线剪开后得到的一张扇形图。在这张图中有个阴影部分,其实它就是圆台的侧面积。假设这个小圆锥,它的母线长是l,可以得出:r1/r2=l/(l+L)。由此推出l=r1L...
圆台的侧面积=大圆锥侧面积-小圆锥侧面积 =πr(L'+l)-πr'L'=πrL'+π r l -πr'L'=πL'(r-r')+πrl 因为r:r'=(L'+l):L'代入消去L' 就得到圆台的侧面积公式 S = πL (r₁ + r₂ )
S圆台侧=S大扇形 -S小扇形=πr(x+l)-πr'x=πrx+πrl -πr'x=πr'(x+l)+πrl -πr'x=π(r+r')l。
所以,圆台的侧面积:S=1/2*2πr2*(a+l)-1/2*2πr1*a=π(r1+r2)l=π(r1+r2)√[(r2-r1)^2+h^2]
设小扇形的半径为x,则大扇形的半径为x+l,则x/(x+l)=r'/r,rx=r'(x+l)。所以:S圆台侧=S大扇形 -S小扇形=πr(x+l)-πr'x=πrx+πrl -πr'x=πr'(x+l)+πrl -πr'x=π(r+r')l。圆柱的特征 在同一个平面内有一条定直线和一条动线,当这个平面绕着这条定直线旋转...