直线上两点间的距离公式:设直线l的方程为y=kx+m,点P1(x1,y1), P2(x2,y2)为该线上任意两点,则 这一公式即所谓圆锥曲线的弦长公式。若记α为直线AB的倾斜角,则 同时,若已知直线公式和其中一个点,并且给定了距离,可以反求另一个点的坐标。
由直线的斜率公式:k = (y1 - y2) / (x1 - x2) 得 y1 - y2 = k(x1 - x2)或x1 - x2 = (y1 - y2)/k。分别代入两点间的距离公式:|AB| = √[(x1 - x2)2 + (y1 - y2)2 ]。稍加整理即得:|AB| = |x1 - x2|√(1 + k2)或|AB| = |y1 - y2|√(1 + ...
详情请查看视频回答
直线上两点间的距离公式:设直线l的方程为y=kx+m,点P1(x1,y1), P2(x2,y2)为该线上任意两点,则 这一公式即所谓圆锥曲线的弦长公式。若记α为直线AB的倾斜角,则 同时,若已知直线公式和其中一个点,并且给定了距离,可以反求另一个点的坐标。
两点间距离公式如下:在二维平面直角坐标系中:设两个点A、B的坐标分别为A、B,则A和B两点之间的距离为:|AB| = √[^2 + ^2]在直线上两点间的距离公式:若直线的方程为y=kx+b,且点,为该线上任意两点,则距离公式可以表示为:|AB| = |X1-X2| × √ 或者 |AB| = |X1-X2|sec...