莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。推导过程 如果存在函数u=u(x)与v=v(x),且它们在点x处都具有n阶导数,那么显而易见的,u(x) ± v(x) 在x处也具有n阶导数,且 (u±v)(n) = u(n)± v(n)至于u(x) × v(x) ...
且 b(上限)∫a(下限)f(x)dx=F(b)-F(a) 这即为牛顿—莱布尼茨公式。 牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:
x→0时,积分上限x→0,这样积分上下限相等,根据牛顿-莱布尼茨法则,结果为 0。过程如图:
牛顿-莱布尼茨公式:∫x^αdx=x^(α+1)/(α+1)+C(α≠-1)。定积分一般定理:定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a...
它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。牛顿-莱布尼茨公式是积分学理论的主干,利用牛顿一莱布尼茨公式可以证明定积分换元公式,积分第一中值定理和积分型余项的泰勒公式。牛顿莱布尼茨公式还可以推广到二重积分与曲线积分,从-维推广到多维。