牛顿莱布尼兹公式的证明

f(x)dx=F(b)-F(a)这即为牛顿—莱布尼茨公式。牛顿布莱尼茨公式通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。牛顿-莱布尼兹公式,又称为微积分基本定理,其内容是:若函数f(x)在闭区间[a, b]上连续,且存在原函数F (x),则f(x)在[a,b]_上可积,且...
牛顿莱布尼兹公式的证明
mengvlog 阅读 1 次 更新于 2025-09-02 06:01:12 我来答关注问题0
  • 莱布尼茨公式:(uv)ⁿ=∑(n,k=0) C(k,n) · u^(n-k) · v^(k)符号含义:C(n,k)组合符号即n取k的组合,u^(n-k)即u的n-k阶导数, v^(k)即v的k阶导数。莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱...

  • 七月的风0709 牛顿莱布尼茨公式的证明

    牛顿莱布尼茨公式的证明如下:证明:设:F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n。则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)。当Δx很小时:F(x1)-F(x0)=...

  •  sumeragi693 牛顿-莱布尼茨公式怎么证明?

    证明过程如下:设F(x)在区间(a,b)上可导,将区间n等分,分点依次是x1,x2,…xi…x(n-1),记a=x0,b=xn,每个小区间的长度为Δx=(b-a)/n,则F(x)在区间[x(i-1),xi]上的变化为F(xi)-F(x(i-1))(i=1,2,3…)当Δx很小时:F(x1)-F(x0)=F’(x1)*Δx F(x2)-F(...

  • x→0时,积分上限x→0,这样积分上下限相等,根据牛顿-莱布尼茨法则,结果为 0。过程如图:

  •  一唯4L 牛顿莱布尼茨公式推导方法

    牛顿莱布尼茨公式推导方法如下:定理:若函数f在[a,b]上连续,且存在原函数F,即F’(x)=f(x),x∈[a,b],则f在[a,b]上可积,且∫(ab)f(x)dx=F(b)-F(a).称为牛顿—莱布尼茨公式,常写成:∫(a->b)f(x)dx=F(x)|(a->b).用老黄的话说,就是:函数的定积分,等于积分区间...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部