什么是三元不等式的基本公式?

三元不等式的基本公式介绍如下:三元基本不等式公式证明:如果a,b,c∈R,那么a3+b3+c3≥3abc,当且仅当a=b=c时,等号成立;如果a,b,c∈R+,那么(a+b+c)/3≥3√(abc),当且仅当a=b=c时,等号成立。一般地,用纯粹的大于号“>”、小于号“
什么是三元不等式的基本公式?
三元不等式的基本公式介绍如下:

三元基本不等式公式证明:如果a,b,c∈R,那么a3+b3+c3≥3abc,当且仅当a=b=c时,等号成立;如果a,b,c∈R+,那么(a+b+c)/3≥3√(abc),当且仅当a=b=c时,等号成立。

一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(,≥,≤,≠)连接的式子叫做不等式。

常用定理

①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。

②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。

③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解;如果H(x)<0,那么不等式F(x)<G(x)与不等式H (x)F(x)>H(x)G(x)同解。

④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。

关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。2023-07-27
mengvlog 阅读 7 次 更新于 2025-08-18 12:23:51 我来答关注问题0
  • 三元不等式的基本公式介绍如下:三元基本不等式公式证明:如果a,b,c∈R,那么a3+b3+c3≥3abc,当且仅当a=b=c时,等号成立;如果a,b,c∈R+,那么(a+b+c)/3≥3√(abc),当且仅当a=b=c时,等号成立。一般地,用纯粹的大于号“>”、小于号“

  •  nice小小白123 怎样证明三元不等式的?

    三元基本不等式公式的四个证明如下 1、乘积不等式 如果a,b,c都是非负实数(a,b,c>=0),那么axb≤cxa。因为如果c=0,则右边的乘积为0,因此显然有上述不等式成立。如果c>0,将a乘以c,可以得到cxa,此时cxa比axb大,即两边不等式有axb≤cxa成立。2、欧拉不等式 如果a,b,c均为实数(a,...

  •  桂林先生聊生活 如何证明三元均值不等式?

    三元均值不等式如下:定理1:如果a,b,c∈R,那么a³+b³+c³≥3abc,当且仅当a=b=c时,等号成立。定理2:如果a,b,c∈R+,那么(a+b+c)/3≥³√(abc),当且仅当a=b=c时,等号成立。结论:设x,y,z都是正数,则有:(1)若xyz=S(定值),则当x=y=z时,x...

  •  呜啦啦呜呐呐 三元不等式是什么?

    三元均值不等式的成立条件:1.当a+b+c为定值时,三次方根(abc)有最大值为(a+b+c)/3 (当且仅当a=b=c是取等号)。2.当abc为定值时,(a+b+c)/3 有最小值为三次方根(abc)。三次方根 如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root).这就是说,如果x3=a,那...

  •  电子数码hcy 如何证明三元不等式成立?

    三元不等式是二元不等式的补充形式,三元不等式和二元不等式类似,经常会有一个三元等式作为条件,解决三元不等式问题的思路大致分为两种。第一是根据等式条件减少未知量的数量,将三元转化为二元。第二是直接利用二元基本不等式的扩展形式或者将三元两两组合变成多个二元不等式形式,在高考中若考到此类问题...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部