换底公式是什么,有什么推论?

换底公式的四个推论 1、底真位置调,对数值互倒。2、底真一数倒,对数加负号。3、底真同次方,对数值照常。4、同底对数比,可以同换底。例如:loga(b)表示以a为底的b的对数 换底公式就是:log(a)(b)=log(c)(b)/log(c)(a)(a,c均大于零且不等于1)推导过程 若有对数log(a)(b...
换底公式是什么,有什么推论?
换底公式及其推论是:
1、对数换底常用公式。
2、[公式描述] 换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。
换底公式的四个推论
1、底真位置调,对数值互倒。
2、底真一数倒,对数加负号。
3、底真同次方,对数值照常。
4、同底对数比,可以同换底。
例如:
loga(b)表示以a为底的b的对数
换底公式就是:log(a)(b)=log(c)(b)/log(c)(a)(a,c均大于零且不等于1)
推导过程
若有对数log(a)(b)设a=n^x,b=n^y(n>0,且n不为1)如:log(10)(5)=log(5)(5)/log(5)(10)
则 log(a)(b)=log(n^x)(n^y)
根据对数的基本公式:log(a)(M^n)=nloga(M)和 基本公式log(a^n)M=1/n×log(a) M
易得:
log(n^x)(n^y)=ylog(n^x)(n)=y/x log(n)(n)=y/x
由 a=n^x,b=n^y可得 x=log(n)(a),y=log(n)(b)
则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a)
得证:log(a)(b)=log(n)(b)/log(n)(a)
例子:log(a)(c) * log(c)(a)=log(c)(c)/log(c)(a) *log(c)(a)=log(c)(c)=1
公式二:log(a)(b)=1/log(b)(a)证明如下:
由换底公式 log(a)(b)=log(b)(b)/log(b)(a) ----取以b为底的对数
log(b)(b)=1 =1/log(b)(a) 还可变形得: log(a)(b)×log(b)(a)=1
2023-08-04
mengvlog 阅读 7 次 更新于 2025-08-17 13:50:32 我来答关注问题0
  •  文暄生活科普 换底公式的几个推论是如何推导出来的?求解,要具体过程!!谢谢大神

    推论一:对于任意正实数a、b和任意不等于零的实数c,有log? = c × log?推导过程:首先,根据换底公式,我们有log? = log? / log?,其中k是任意大于1且不等于1的正数。当我们考虑log?时,可以将其表示为log? / log?。根据对数的幂运算法则,log? = c × log?。因此,log? = c × lo...

  • 2、[公式描述] 换底公式是高中数学常用对数运算公式,可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。换底公式的四个推论 1、底真位置调,对数值互倒。2、底真一数倒,对数加负号。3、底真同次方,对数值照常。...

  • 换底公式的几个推论可以从换底公式本身直接推导出来。换底公式一般形式为:logb = logc / logc,其中b、c为任意大于1且不等于的正数。现在,让我们具体推导换底公式的推论。推论一:对于任意正实数a、b和任意不等于零的实数c,有:logb = c * logb。这是换底公式的直接应用,通过将指数c看作对数...

  •  他姓王957 换底公式的几个推论是如何推导出来的?求解,要具体过程!!谢谢大神

    由log(a)b=log(s)b/log(s)a,依次推出:第一步、log(a^m) b=(loga b) /(loga a^m)第二步、log(a^m) b^n=(loga b^n)/(loga^m)第三步、 loga b=(logb b)/(logb a)第四步、loga b * logb c= loga b*(loga c)/(loga b)...

  •  教育解题小达人 换底公式的四个推论

    换底公式可将多异底对数式转化为同底对数式,结合其他的对数运算公式一起使用。计算中常常会减少计算的难度,更迅速的解决高中范围的对数运算。以下是换底公式的相关介绍:通常在处理数学运算中,将一般底数转换为以e为底的自然对数或者是转换为以10为底的常用对数,方便运算;有时也通过用换底公式来...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部