tanx taylor展开式如下图:泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中,表示f(x)...
常用泰勒展开公式如下:1、sinx=x-1/6x^3+o(x^3),这是泰勒公式的正弦展开公式,在求极限的时候可以把sinx用泰勒公式展开代替。2、arcsinx=x+1/6x^3+o(x^3),这是泰勒公式的反正弦展开公式,在求极限的时候可以把arcsinx用泰勒公式展开代替。3、tanx=x+1/3x^3+o(x^3),这是泰勒公式的...
y = ln (1 + x)的泰勒展开式为:y = ln (1 + x) = x - x^2/2 + x^3/3 - x^4/4 + 。当 |x| < 1="" 时,ln="" (1="" +="" x)="" -(x="" -="" x^2/2)="x^3/3" -="" x^4/4="" +="" .=> 0。因此 ln(1 + x) > x - x^2/2。
若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:其中, 表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。
要证明泰勒三阶展开式,可以使用泰勒公式进行推导。泰勒公式表示,在某一点a处,可以将任意光滑的函数f展开成一个幂级数:f(x) = Σn=0到∞ (f^n(a)/n!)(x-a)^n 其中,f^n(a)表示函数f在点a处的n阶导数值。如果我们只保留展开式中的前四项,即n=0,1,2,3,就可以得到泰勒三阶展开...