多边形的内角和公式是什么?

把n边形分成n-2个三角形,每个三角形的内角和为180度。因此,正多边形内角和定理n边形的内角的和等于: (n - 2)×180°(n大于等于3且n为整数),但任意多边形的外角和始终为360度。
多边形的内角和公式是什么?
把n边形分成n-2个三角形,每个三角形的内角和为180度。因此,正多边形内角和定理n边形的内角的和等于: (n - 2)×180°(n大于等于3且n为整数),但任意多边形的外角和始终为360度。

扩展资料
多边形内角和定理证明:
证法一:在n边形内任取一点O,连结O与各个顶点,把n边形分成n个三角形。
因为这n个三角形的内角的和等于n·180°,以O为公共顶点的n个角的和是360°。
所以n边形的内角和是n·180°-2×180°=(n-2)·180°。(n为边数)
即n边形的内角和等于(n-2)×180°。(n为边数)
证法二:连结多边形的任一顶点A1与其不相邻的各个顶点的线段,把n边形分成(n-2)个三角形。
因为这(n-2)个三角形的内角和都等于(n-2)·180°(n为边数)。
所以n边形的内角和是(n-2)×180°。
证法三:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,
这(n-1)个三角形的内角和等于(n-1)·180°(n为边数)。
以P为公共顶点的(n-1)个角的和是180°。
所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°。(n为边数)
参考资料:百度百科-多边形内角和定理
2021-02-17
多边形内角和=(边数-2)×180°。2022-07-17
(n-2)*180度
n=边数2022-07-07
mengvlog 阅读 14 次 更新于 2025-10-07 13:17:46 我来答关注问题0
  •  小海爱科学 多边形内角和公式?

    以P为公共顶点的(n-1)个角的和是180° 所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.重点:多边形内角和定理及推论的应用。难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。

  • 1. 多边形内角和公式:多边形的内角和等于 (n - 2) × 180°,其中 n 是多边形的边数。2. 多边形外角和公式:多边形的外角和等于 360°。3. 多边形边数和顶点数的关系:多边形的边数与顶点数相等。4. 正多边形内角公式:正多边形的每个内角都相等,可通过以下公式计算单个内角度数:内角度数 = (...

  • 一个n边形的内角和等于(n-2)乘以180°。这个公式可以逆转使用:n边形的边数等于其内角和除以180°后加2。从一个n边形的一个顶点出发,可以画出(n-3)条对角线。整个n边形中,对角线的总数是n乘以(n-3)除以2。如果从一个顶点引出所有对角线,可以将多边形分割成n-2个三角形。以下是几个...

  •  上海贡苒网络 多边形的七个公式是什么,怎么用?

    多边形的七个公式包括:1. 边数计算公式:n边形的边数=(内角和÷180°)+2。2. 对角线数量公式:n边形共有n×(n-3)÷2条对角线。3. 对角线起点公式:过n边形一个顶点有(n-3)条对角线。4. 内角和公式:n边形的内角和等于(n-2)×180°。5. 外角和公式:n边形外角和等于360°。

  •  小熊玩科技gj 多边形的七个公式是什么,怎么用?

    多边形的七个公式是如下:1、n边形的边=(内角和÷180°)+2。2、n边形共有n×(n-3)÷2=对角线。3、过n边形一个顶点有(n-3)条对角线。4、n边形的内角和等于(n-2)x180。5、n边形外角和等于n·180°-(n-2)·180°=360°。6、边数=360°/(180°-x)。7、每个外角=180...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部