以P为公共顶点的(n-1)个角的和是180° 所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.重点:多边形内角和定理及推论的应用。难点:多边形内角和定理的推导及运用方程的思想来解决多边形内、外角的计算。
1. 多边形内角和公式:多边形的内角和等于 (n - 2) × 180°,其中 n 是多边形的边数。2. 多边形外角和公式:多边形的外角和等于 360°。3. 多边形边数和顶点数的关系:多边形的边数与顶点数相等。4. 正多边形内角公式:正多边形的每个内角都相等,可通过以下公式计算单个内角度数:内角度数 = (...
一个n边形的内角和等于(n-2)乘以180°。这个公式可以逆转使用:n边形的边数等于其内角和除以180°后加2。从一个n边形的一个顶点出发,可以画出(n-3)条对角线。整个n边形中,对角线的总数是n乘以(n-3)除以2。如果从一个顶点引出所有对角线,可以将多边形分割成n-2个三角形。以下是几个...
多边形的七个公式包括:1. 边数计算公式:n边形的边数=(内角和÷180°)+2。2. 对角线数量公式:n边形共有n×(n-3)÷2条对角线。3. 对角线起点公式:过n边形一个顶点有(n-3)条对角线。4. 内角和公式:n边形的内角和等于(n-2)×180°。5. 外角和公式:n边形外角和等于360°。
多边形的七个公式是如下:1、n边形的边=(内角和÷180°)+2。2、n边形共有n×(n-3)÷2=对角线。3、过n边形一个顶点有(n-3)条对角线。4、n边形的内角和等于(n-2)x180。5、n边形外角和等于n·180°-(n-2)·180°=360°。6、边数=360°/(180°-x)。7、每个外角=180...