线性插值公式怎么求?

线性差值计算公式Y=((X-X1)(Y2-Y1)/(X2-X1))+Y1,线性插值法是数学、计算机图形学等领域广泛使用的一种简单插值方法。常用计算方法如下:假设我们已知坐标(x0,y0)与(x1,y1),要得到【x0,x1】区间内某一位置x在直线上的值。我们可以得到(y-y0)(x-x0)/(y1-y0)(x1-x...
线性插值公式怎么求?
线性差值计算公式Y=((X-X1)(Y2-Y1)/(X2-X1))+Y1,线性插值法是数学、计算机图形学等领域广泛使用的一种简单插值方法。常用计算方法如下:假设我们已知坐标(x0,y0)与(x1,y1),要得到【x0,x1】区间内某一位置x在直线上的值。我们可以得到(y-y0)(x-x0)/(y1-y0)(x1-x0)假设方程两边的值为α,那么这个值就是插值系数—从x0到x的距离与从x0到x1距离的比值。由于x值已知,所以可以从公式得到α的值 α=(x-x0)/(x1-x0) 同样,α=(y-y0)/(y1-y0) 这样,在代数上就可以表示成为:y=(1- α)y0+αy1或者,y=y0+α(y1-y0)这样通过α就可以直接得到y。线性插值法的来源:线性插值法又称“内插法”,是利用函数在某区间中已知的若干点的函数值,作出适当的特定函数,在线性插值区间的其他点上用这特定函数的值作为函数的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。线性插值法的拉丁文原意是“内部插入”,即在已知的函数表中,插入一些表中没有列出的、所需要的中间值。若函数在自变数一些离散值所对应的函数值为已知,则可以作一个适当的特定函数,使得在这些离散值所取的函数值,就是函数的已知值。从而可以用特定函数来估计函数在这些离散值之间的自变数所对应的函数值,这种方法称为插值法。
2024-01-12
mengvlog 阅读 14 次 更新于 2025-10-08 20:08:35 我来答关注问题0
萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部