球体积公式怎么推导出来的

2.从圆柱做一个与其等底等高的圆锥:V锥 根据公式可知其右侧环形的面积为π×r^2-π×r×h/r=π×(r^2-h^2)∵π×(r^2-h^2)=π×(r^2-h^2)∴V柱-V锥=V半球 ∵V柱-V锥=π×r^3-π×r^3/3=2/3π×r^3 ∴V半球=2/3π×r^3 由V半球可推出V球=2×V半球=4/3×...
球体积公式怎么推导出来的
是通过高等数学中的微积分来推导
现有一个圆x^2+y^2=r^2 在xoy坐标轴中 让该圆绕x轴转一周 就得到了一个球体
球体体积的微元为dV=π[√(r^2-x^2)]^2dx
∫dV=∫π[√(r^2-x^2)]^2dx 积分区间为[-r,r]
求得结果为
4/3πr^32016-03-30
证明:
证:v=4/3×πr^3
欲证v=4/3×πr^3,可证1/2v=2/3×πr^3
做一个半球h=r, 做一个圆柱h=r

∵V柱-V锥
= π×r^3- π×r^3/3
=2/3π×r^3
∴若猜想成立,则V柱-V锥=V半球
根据祖暅原理:夹在两个平行平面之间的两个立体图形,被平行于这两个平面的任意平面所截,如果所得的两个截面面积相等,那么,这两个立体图形的体积相等。
∴若猜想成立,两个平面:S1(圆)=S2(环)
1.从半球高h点截一个平面 根据公式可知此面积为π×(r^2-h^2)^0.5^2=π×(r^2-h^2)
2.从圆柱做一个与其等底等高的圆锥:V锥 根据公式可知其右侧环形的面积为π×r^2-π×r×h/r=π×(r^2-h^2)
∵π×(r^2-h^2)=π×(r^2-h^2)
∴V柱-V锥=V半球
∵V柱-V锥=π×r^3-π×r^3/3=2/3π×r^3
∴V半球=2/3π×r^3
由V半球可推出V球=2×V半球=4/3×πr^3
证毕。
扩展资料:
球体性质,用一个平面去截一个球,截面是圆面。球的截面有以下性质:
1、球心和截面圆心的连线垂直于截面。
2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2
球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。
在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。
参考资料来源:百度百科-球
2019-04-02
楼上的不对挖````高中学的内容啊``````

1解:将一个底面半径R高为R的圆柱中心挖去一个等底等高的圆椎。剩下的部分与一个半球用平面去割时处处面积相等。等出它们体积相等的结论。而那个被挖体的体积好求。就是半球体积了。V=2/3πR^3 。因此一个整球的体积为4/3πR^3 球是圆旋转形成的。圆的面积是S=πR^2,则球是它的积分,可求相应的球的体积公式是V=4/3πR^3

2解:你可以学学爱迪生,将球挖个小眼,灌满水,然后将水倒进量杯就算出体积拉!!!

祝你学习进步!!!!诚答~~~~~~~2008-09-23
如果你学过微积分,那么球的体积可以通过二重积分或三重积分来做。

如果没有学过,那么中学里面有一个祖亘(音,那个字打不出来,是祖冲之的儿子)原理:如果两个立体的所有的平行截面的面积均相等,则二者体积相等。

做法如下:
将半球作为一个立体,
以球的半径为底面半径,以球的半径为高的圆柱体,中间挖去一个同样的底和高的圆锥体。将这个立体作为第二个立体,。
可以证明上述两个立体的水平截面的面积均相等,
于是半球的体积为 Pi*R^2*R-1/3*Pi*R^2*R=2/3*Pi*R^3

由此可得球的体积公式4/3*Pi*R^32008-09-23
最佳答案
证明:
证:v=4/3×πr^3
欲证v=4/3×πr^3,可证1/2v=2/3×πr^3
做一个半球h=r, 做一个圆柱h=r

∵V柱-V锥
= π×r^3- π×r^3/3
=2/3π×r^3
∴若猜想成立,则V柱-V锥=V半球
根据祖暅原理:夹在两个平行平面之间的两个立体图形,被平行于这两个平面的任意平面所截,如果所得的两个截面面积相等,那么,这两个立体图形的体积相等。
∴若猜想成立,两个平面:S1(圆)=S2(环)
1.从半球高h点截一个平面 根据公式可知此面积为π×(r^2-h^2)^0.5^2=π×(r^2-h^2)
2.从圆柱做一个与其等底等高的圆锥:V锥 根据公式可知其右侧环形的面积为π×r^2-π×r×h/r=π×(r^2-h^2)
∵π×(r^2-h^2)=π×(r^2-h^2)
∴V柱-V锥=V半球
∵V柱-V锥=π×r^3-π×r^3/3=2/3π×r^3
∴V半球=2/3π×r^3
由V半球可推出V球=2×V半球=4/3×πr^3
证毕。
扩展资料:
球体性质,用一个平面去截一个球,截面是圆面。球的截面有以下性质:
1、球心和截面圆心的连线垂直于截面。
2、球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2
球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。
在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。2019-12-23
是通过高等数学中的微积分来推导
现有一个圆x^2+y^2=r^2 在xoy坐标轴中 让该圆绕x轴转一周 就得到了一个球体
球体体积的微元为dV=π[√(r^2-x^2)]^2dx
∫dV=∫π[√(r^2-x^2)]^2dx 积分区间为[-r,r]
求得结果为
4/3πr^32019-12-23
这个就是把球一层层切割,球体变成一个个小圆柱了2019-12-23
球的半径为R、面积F=4πR^2。将球分割成底面积为ΔF、顶点在球心的n个相等的多棱椎,每个多棱椎的体积为ΔV=RΔF/3。
球体积V=Σ[1,N]RΔF/3=R/3*Σ[1,N]ΔF。
当N-->∞、而ΔF-->0时,V=lim[N-->∞]R/3*Σ[1,N]ΔF=RF/3=4πR^3/3。2016-03-30
2019-11-06
由平行截面面积求体积

图画的有点不好,第一次投稿望被采纳😂😂
2020-05-16
mengvlog 阅读 78 次 更新于 2025-10-07 11:31:45 我来答关注问题0
  • 由V半球可推出V球=2×V半球=4/3×πr^3 证毕。

  •  科创17 球体的体积是怎么推导出来的?

    1.球的体积公式的推导 基本思想方法:先用过球心 的平面截球 ,球被截面分成大小相等的两个半球,截面⊙ 叫做所得半球的底面.(l)第一步:分割.用一组平行于底面的平面把半球切割成 层.(2)第二步:求近似和.每层都是近似于圆柱形状的“小圆片”,我们用小圆柱形的体积近似代替“小圆片”...

  • 可以用“球冠表面积公式”求 ,切去V1=π(h*h)(R-h/3),h=R-l,球V=(4/3)πR^3。注意:球冠不是几何体,而是一种曲面。它是球面的一部分,是球面被一个平面截成的,球冠的任何部分都不能展开成平面图形,球冠的底面是圆而不是圆面,故球冠的面积不能包括底面圆的面积。球面被一个...

  • 阿基米德通过平衡法推导出球体积公式的过程如下:1.球体积公式的推导过程 阿基米德的推导过程可以概括为:将球体分成若干个小切片,然后在水平浸入水中的容器中,观察在容器内液位的升高和容器所承受的浮力。通过计算每一个小切片所占的体积和相应的浮力,推导出球的体积公式。其中,重要的是阿基米德的平衡法...

  •  翡希信息咨询 球体积公式怎么推导出来的

    球体积公式V = πr3是通过几何分割和微积分运算推导出来的。具体推导过程如下:理解球的几何特性:球是一个三维对称的几何体,其所有点距离中心的距离都相等。球的表面由无数个微小的曲面单元组成。几何分割:为了求球的体积,可以将球分割成许多小的单元体积。这些单元体积可以理解为以球心为顶点,与...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部