向量a与向量b的夹角公式是:cos=(ab的内积)/(|a||b|)。其中设a,b是两个不为0的向量。而向量的夹角就是向量两条向量所成角,而且需要注意的是向量是具有方向性的。也就是说,两个向量夹角的取值范围是:0到90度。向量的表示方法:1、代数表示:一般印刷用黑体的小写英文字母(a、b、c等)...
向量a与向量b的夹角公式是什么?
向量a与向量b的夹角公式是:cos=(ab的内积)/(|a||b|)。
其中设a,b是两个不为0的向量。而向量的夹角就是向量两条向量所成角,而且需要注意的是向量是具有方向性的。也就是说,两个向量夹角的取值范围是:0到90度。
向量的表示方法:
1、代数表示:一般印刷用黑体的小写英文字母(a、b、c等)来表示,手写用在a、b、c等字母上加一箭头(→)表示,如,也可以用大写字母AB、CD上加一箭头(→)等表示。
2、几何表示:向量可以用有向线段来表示。有向线段的长度表示向量的大小,向量的大小,也就是向量的长度。长度为0的向量叫做零向量,记作长度等于1个单位的向量,叫做单位向量。箭头所指的方向表示向量的方向。
3、坐标表示:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。
由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点的坐标。向量a称为点P的位置向量。
2022-03-04