几何领域的抛物线焦点弦弦长公式 定义:如果一条倾斜角为α的直线过抛物线焦点F,并交抛物线于A。B两点,则AB的长度为2P/(sinα)2(即2P除以sinα的平方)推导过程:设两交点A(X1,Y1)B(X2,Y2)(y2-y1)/(x2-x1)=tanα |AB|=√[(y2-y1)^2+(x2-x1)^2]=√[(tanα^2+1)(...    
抛物线焦点弦长公式是什么?
    几何领域的抛物线焦点弦弦长公式
定义:如果一条倾斜角为α的直线过抛物线焦点F,并交抛物线于A。B两点,则AB的长度为2P/(sinα)2(即2P除以sinα的平方)
推导过程:
设两交点A(X1,Y1)B(X2,Y2)
(y2-y1)/(x2-x1)=tanα
|AB|=√[(y2-y1)^2+(x2-x1)^2]=√[(tanα^2+1)(x2-x1)^2]
设直线l为y=tanαx+b且过点(p/2,0)
即直线为y=tanαx-ptanα/2
联立得到tanα^2x^2-(tanα^2+2)px+p^2tanα^2/4=0
那么(x2-x1)^2
=(x2+x1)^2-4x1x2
=((tanα^2+2)p/tanα^2)^2-4*(p^2tanα^2/4)/tanα^2
=4p^2(tanα^2+1)/tanα^4
那么|AB|=√[(tanα^2+1)(x2-x1)^2]=2p(tanα^2+1)/tanα^2=2p/(sinα)2
2021-05-07
在抛物线y²=2px中,弦长公式为d=p+x1+x2。在抛物线y²=-2px中,d=p-(x1+x2)。在抛物线x²=2py中,弦长公式为d=p+y1+y2。在抛物线x²=-2py中,弦长公式为d=p-(y1+y2)。
在y²=2px中,过焦点直线交抛物线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2,图形关于x轴对称,焦点为(p/2,0)。
抛物线焦点弦的结论:
1、过抛物线y^2=2px的焦点F的弦AB与它交于点
A(x1,y1),B(x2,y2),则|AB|=x1+x2+p
证明:设抛物线的准线为L,从点A、B分别作L的垂线垂足是C、D,由于L的方程是x=-p/2,所以|AC|=x1+p/2,|BD|=x2+p/2,根据抛物线的定义有:|AF|=|AC|,|BF|=|BD|,
所以:|AB|=|AF|+|BF|=x1+x2+p
2、过抛物线x^2=2py的焦点F的弦AB与它交于点A(x1,y1),B(x2,y2),则|AB|=y1+y2+p
3、过抛物线y^2=-2px的焦点F的弦AB与它交于点A(x1,y1),B(x2,y2),则|AB|=-x1-x2+p
4、过抛物线x^2=-2py的焦点F的弦AB与它交于点A(x1,y1),B(x2,y2),则|AB|=-y1-y2+p
2021-05-07
焦点弦公式2p/sina^2
证明:设抛物线为y^2=2px(p>0),过焦点f(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于a(x1,y1),b(x2,y2)
联立方程得k^2(x-p/2)^2=2px,整理得k^2x^2-p(k^2+2)x+k^2p^2/4=0
所以x1+x2=p(k^2+2)/k^2
由抛物线定义,af=a到准线x=-p/2的距离=x1+p/2,
bf=x2+p/2
所以ab=x1+x2+p=p(1+2/k^2+1)=2p(1+1/k^2)=2p(1+cos^2/sin^2a)=2p/sin^2a
抛物线有关切线、法线的几何性质
1、设抛物线上一点P的切线与准线相交于Q,F是抛物线的焦点,则PF⊥QF。且过P作PA垂直于准线,垂足为A,那么PQ平分∠APF。
2、过抛物线上一点P作准线的垂线PA,则∠APF的平分线与抛物线切于P。从这条性质可以得出过抛物线上一点P作抛物线的切线的尺规作图方法。
3、设抛物线上一点P(P不是顶点)的切线与法线分别交轴于A、B,则F为AB中点。这个性质可以推出抛物线的光学性质,即经焦点的光线经抛物线反射后的光线平行于抛物线的对称轴。各种探照灯、汽车灯即利用抛物线(面)的这个性质,让光源处在焦点处以发射出(准)平行光。
4、设抛物线上除顶点外的点P的切线交轴于A,交顶点O的切线于B,则FB垂直平分PA,且FB与准线的交点M恰好是P在准线上的射影(即PM垂直于准线)。
2021-05-07
√[(tanα^2+1)(x2-x1)^2]=2p(tanα^2+1)/tanα^2=2p/(sinα)2。弦长公式指直线与圆锥曲线相交所得弦长的公式。圆锥曲线, 是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。
推导过程:
设两交点A(X1,Y1)B(X2,Y2)
(y2-y1)/(x2-x1)=tanα
|AB|=√[(y2-y1)^2+(x2-x1)^2]=√[(tanα^2+1)(x2-x1)^2]
设直线l为y=tanαx+b且过点(p/2,0)
即直线为y=tanαx-ptanα/2
联立得到tanα^2x^2-(tanα^2+2)px+p^2tanα^2/4=0
那么(x2-x1)^2
=(x2+x1)^2-4x1x2
=((tanα^2+2)p/tanα^2)^2-4*(p^2tanα^2/4)/tanα^2
=4p^2(tanα^2+1)/tanα^4
那么|AB|=√[(tanα^2+1)(x2-x1)^2]=2p(tanα^2+1)/tanα^2=2p/(sinα)2
2021-05-07
焦点弦公式2p/sina^2
证明:设抛物线为y^2=2px(p>0),过焦点f(p/2,0)的弦直线方程为y=k(x-p/2),直线与抛物线交于a(x1,y1),b(x2,y2)
联立方程得k^2(x-p/2)^2=2px,整理得k^2x^2-p(k^2+2)x+k^2p^2/4=0
所以x1+x2=p(k^2+2)/k^2
由抛物线定义,af=a到准线x=-p/2的距离=x1+p/2,
bf=x2+p/2
所以ab=x1+x2+p=p(1+2/k^2+1)=2p(1+1/k^2)=2p(1+cos^2/sin^2a)=2p/sin^2a
抛物线四种方程的异同
一、共同点:
①原点在抛物线上,离心率e均为1②对称轴为坐标轴;
③准线与对称轴垂直,垂足与焦点分别对称于原点,它们与原点的距离都等于一次项系数的绝对值的1/4
二、不同点:
①对称轴为x轴时,方程右端为±2px,方程的左端为y^2;对称轴为y轴时,方程的右端为±2py,方程的左端为x^2;
②开口方向与x轴(或y轴)的正半轴相同时,焦点在x轴(y轴)的正半轴上,方程的右端取正号;开口方向与x(或y轴)的负半轴相同时,焦点在x轴(或y轴)的负半轴上,方程的右端取负号。
2021-05-07
抛物线的焦点弦长公式使用以下方式计算:
假设抛物线的焦点为F,抛物线的焦点到抛物线上的一点P的距离为d,而焦点到抛物线的直线段长度为l。那么抛物线焦点弦长公式如下:
l = 4 * p * d
其中,p是抛物线的焦距,表示焦点到抛物线的顶点的垂直距离。
2023-07-29
弦公式2p/sina^2。
抛物线是指平面内与一定点和一定直线(定直线不经过定点)的距离相等的点的轨迹,其中定点叫抛物线的焦点,定直线叫抛物线的准线。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。
在数学中,抛物线是一个平面曲线,它是镜像对称的,并且当定向大致为U形(如果不同的方向,它仍然是抛物线)。它适用于几个表面上不同的数学描述中的任何一个,这些描述都可以被证明是完全相同的曲线。
抛物线的一个描述涉及一个点(焦点)和一条线(准线)。焦点并不在准线上。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由圆锥形表面和平行于锥形母线的平面的交点形成。第三个描述是代数。
焦点弦:
焦点弦是指椭圆、双曲线或者抛物线上经过一个焦点的弦。焦点弦是由两个在同一条直线上的焦半径构成的,焦点弦长就是这两个焦半径长之和。连接圆锥曲线上任意两点得到的线段叫做圆锥曲线的弦。若这条弦经过焦点,则称为焦点弦。焦点弦也可以看成由同一直线上的两条焦半径构成。2023-07-23
如果一条倾斜角为α的直线过抛物线焦点F,并交抛物线于A.B两点,则AB的长度为 2P/(sinα)2                            (即 2P除以 sinα的平方) 
推导过程   
设两交点 A(X1,Y1)B(X2,Y2)
(y2-y1)/(x2-x1)=tanα
|AB|=√[(y2-y1)^2+(x2-x1)^2]=√[(tanα^2+1)(x2-x1)^2]
设直线l为y=tanαx+b且过点(p/2,0)
即直线为y=tanαx-ptanα/2
联立得到
tanα^2x^2-(tanα^2+2)px+p^2tanα^2/4=0
那么
(x2-x1)^2
=(x2+x1)^2-4x1x2
=((tanα^2+2)p/tanα^2)^2-4*(p^2tanα^2/4)/tanα^2
=4p^2(tanα^2+1)/tanα^4
那么|AB|=√[(tanα^2+1)(x2-x1)^2]=2p(tanα^2+1)/tanα^2=2p/(sinα)22023-07-16
焦点弦公式2p/sina^22023-07-15