如何使用全概率公式和贝叶斯公式

使用全概率公式和贝叶斯公式:分子为P(A|Bi)P(Bi)也就是说是A与Bi同时发生的概率。分母是一个全概率公式,用Bi的全概率来表示A发生的概率。等式左边的结论P(Bi|A)也就是A发生情况下B的条件概率。很明显,等式左边乘以分母也是表示的是A与Bi同时发生的概率。全概率公式是用来求一个事件发生...
如何使用全概率公式和贝叶斯公式
使用全概率公式和贝叶斯公式:分子为P(A|Bi)P(Bi)也就是说是A与Bi同时发生的概率。分母是一个全概率公式,用Bi的全概率来表示A发生的概率。等式左边的结论P(Bi|A)也就是A发生情况下B的条件概率。很明显,等式左边乘以分母也是表示的是A与Bi同时发生的概率。
全概率公式是用来求一个事件发生的总概率的,它的基本思想是:将一个复杂的事件分解为若干个互不相容且完备的子事件,然后分别求出每个子事件发生的概率,再乘以该子事件下复杂事件发生的条件概率,最后将所有结果相加,就得到了复杂事件发生的总概率。
A是要求的复杂事件,Bi是互不相容且完备的子事件,也就是说,Bi中任意两个不会同时发生,而且它们中至少有一个一定会发生。P(Bi)是子事件发生的概率,P(A|Bi)是在子事件发生的条件下,复杂事件发生的条件概率。

全概率公式为我们提供了一个有效的工具,用于处理复杂事件的概率计算问题。这个公式在实际问题中具有广泛的应用,可以帮助我们计算复杂事件的概率,从而做出合理的决策。
贝叶斯公式是用来求一个事件的条件概率的,它的基本思想是:利用已知的结果,反推出原因的可能性。贝叶斯公式可以看作是全概率公式的逆向应用,原因发生的条件概率,也叫做后验概率。

全概率公式和贝叶斯公式的区别:
1、从形式上看,全概率公式是求一个事件发生的总概率,而贝叶斯公式是求一个事件的条件概率。
2、从思想上看,全概率公式是将一个复杂的事件分解为若干个简单的子事件,然后利用子事件发生的概率和条件概率来求出复杂事件发生的概率。贝叶斯公式是利用已知的结果,反推出原因的可能性,然后利用原因发生的概率和条件概率来更新对原因发生的概率的估计。
2023-10-13
mengvlog 阅读 15 次 更新于 2025-12-20 13:54:53 我来答关注问题0
萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部