其次,我们需要知道等比数列的前n项和公式为:Sn = a1 / (1 - q) - a1 / (1 - q)^n。然后,我们需要判断前n项和的最大值。当q > 1时,数列是递增的,当0 < q < 1时,数列是递减的。因此,当q > 1时,前n项和的最大值出现在n最小时,即S1;当0 < q < 1时,前n项和的...
等比数列求和公式:记数列{an}为等比数列,公比为q,其前n项和为Sn,则有:Sn=n×a1 (q=1)Sn=a1(1-qⁿ)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q为公比,n为项数)1、等比级数若收敛,则其公比q的绝对值必小于1。2、故当n趋向于无穷时,等比数列求和公式中q的n次方趋于0(...
等比数列的前n项和 Sn、S2n-Sn、S3n-S2n成等比数列,公比为q^n。证明如下:设等比数列{an}的公比为q,an=a1q^(n-1)am=a1q^(m-1)两式相除得an/am=q^(n-m),∴an=amq^(n-m)。S2n=a1+a2+...+an+a(n+1)+a(n+2)+...+a2n=Sn+(a1q^n+a2q^n+...+anq^n)=Sn+(a1+...
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)以上n均属于正整数。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公式可以快速的计算出该数列的和。等比公式运用推论:1、若m、n、p、q∈N,且m+n=p+q...
1、定义式:2、求和公式:3、通项公式:4、从等比数列的定义、通项公式、前n项和公式可以推出:等差数列公式:1、定义式 对于数列若满足:则称该数列为等差数列。其中,公差d为一常数,n为正整数。2、通项公式 an=a1+(n-1)*d。首项a1=1,公差d=2。3、前n项和公式为:Sn=a1*n+[n*(n...