高中数学6个基本不等式的公式有哪些?

高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,展开的a^2+b^...
高中数学6个基本不等式的公式有哪些?
高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。

1、基本不等式a^2+b^2≧2ab:
针对任意的实数a,b都成立,当且仅当a=b时,等号成立。
证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。
它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。

2、基本不等式√ab≦(a+b)/2:
这个不等式需a,b均大于0,等式才成立,当且仅当a=b时等号成立。
证明过程:要证(a+b)/2≧√ab,只证a+b≧2√ab,只要能证(√a-√b)^2≧0,明显(√a-√b)^2≧0是成立的。
它的几何意义是圆内的直径大于被弦截后得到直径的2个部分的乘积的二倍。

3、b/a+a/b≧2:
这个不等式的要求ab>0,当且仅当a=b时等号成立,其实就是常说的说a,b可以同时为正数,也可同时为负数。
证明的过程:b/a+a/b(a^2+b^2)/ab≧2,只要能证a^2+b^2≧2ab就可以。

4、a^3+b^3+c^3≧3abc:
基本不等式的拓展公式,a,b,c都是正数。

5、(a+b+c)/3≧³√abc:
a,b,c都是正数,当且仅当a=b=c时等号成立。

6、柯西不等式。
高一数学基本不等式公式:
假设a,b是正数,既然如此那,(a+b)/2≥(根号下ab),当且仅当a=b时,等号成立,我们称上面说的不等式为基本不等式。
若a,b∈R,则a平方+b平方≥2ab或ab≤(a平方+b平方)/2。
若a,b∈R,则(a平方+b平方)/2≥[(a+b)/2]的平方。
若a,b∈R※,则a+b=2(根号ab) 或ab≤[(a+b)/2]的平方。
2023-08-13
mengvlog 阅读 3 次 更新于 2025-09-03 22:57:07 我来答关注问题0
  • 高中6个基本不等式的公式有a^2+b^2≧2ab、√ab≦(a+b)/2、b/a+a/b≧2、(a+b+c)/3≧³√abc、a^3+b^3+c^3≧3abc、柯西不等式。1、基本不等式a^2+b^2≧2ab:针对任意的实数a,b都成立,当且仅当a=b时,等号成立。证明的过程:因为(a-b)^2≧0,展开的a^2+b^...

  • 均值不等式6个基本公式如下:关于均值不等式的证明方法有很多,数学归纳法(第一数学归纳法或反向归纳法)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等,都可以证明均值不等式。几何平均数是对各变量值的连乘积开项数次方根。求几何平均数的方法叫做几何平均法。如果总水平、总成果等于...

  •  98聊教育 高中数学基本不等式有哪些?

    1、基本不等式:√(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数的平方。2、绝对值不等式公式:| |a|-|b| |≤|a-b|≤|a|+|b|。| |a|-|b| |≤|a+b|≤|a|+|b|。3、柯西不等式:设a1,a2,…an,b1,b2…bn均是实数,则有...

  • 3、若f(x)单调函数,在x1、x2都在定义域内(x1、x2均不为0),若存在零点,则不等式f(x1)×f(x2)0,g(x)>0,则...

  •  玉米面小柜 均值不等式6个基本公式是什么?

    均值不等式6个基本公式是、Hn≤Gn≤An≤Qn。1、均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。2、关于均值不等式的证明方法有很多,数学归纳法(第一数学...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部