数学期望的六个公式如下:1、总和期望公式:E(X+Y)=E(X)+E(Y)。2、乘积期望公式:E(XY)=E(X)×E(Y)。3、方差公式:方差是各个数据与平均值之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],x_为数据的平均数,n为数据的个数。4、协方差公式...
总和期望,乘积期望,定义期望,方差公式,协方差公式和零期望公式。根据百度文库查询得知,1、总和期望公式:定义为任何给定的两个事件X和Y的期望相加的结果,即E(X+Y)=E(X)+E(Y)。2、乘积期望公式:定义为任何给定的两个事件X和Y的期望相乘的结果,即E(XY)=E(X)×E(Y)。3、定义期...
数学期望的六个公式包括:离散型随机变量的数学期望公式:$E = sum x_ip_i$,其中$x_i$是随机变量X的可能取值,$p_i$是$x_i$对应的概率。连续型随机变量的数学期望公式:$E = int_{-infty}^{infty} xfdx$,其中$f$是随机变量X的概率密度函数。数学期望的线性性质:$E = aE + b$,...
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)。X ;1,X ;2,X ;3,……,X。n为这离散型随机变量,p(X1),p(X2),p(X3),……p(Xn)为这几个数据的概率函数。在随机出现的几个数据中p(X1),p(X2),...
公式:如果X、Y独立,则:E(XY)=E(X)*E(Y)。如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义。或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)-E(X)*E(Y),D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)。性质:数学期望E(x)完全由随机变量X的概率分布所确定。若X...