常见的莱布尼茨n阶求导公式:(uv)'=u'v+uv'(uv)'=u'v+2u'v'+uv'。莱布尼茨法则也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式(微积分学),莱布尼茨公式用于对两个函数的乘积求取其高阶导数,一般的,如果函数u=u(x)与函数v=v(x)在点x处都具...
莱布尼茨求导法则n阶公式:设函数u(x)、v(x)在点x都具有 n 阶导数。二阶导数乘积的运算法则有:[u(x)*v(x)]''=u''(x)v(x)+2u'(x)v'(x)+u(x)v''(x),可见导数阶数越高,相应乘积的导数越复杂,但其间却有着明显的规律性,为归纳其一般规律,乘积的 n 阶导数的系数及导数阶数...
1、x^2和cos2x的n阶导数如下:2、代入推导。
求n阶导数用莱布尼茨公式即可 (uv)^(n)=∑(n,k=0) C(k,n) * u^(n-k) * v^(k)其中C(k,n)=n!/(k!(n-k)!)在这里u=e^x,其n阶导数都是e^x 而v=sinx的n阶导数为v(n)=sin(x+nπ/2)于是代入得到 y(n)=e^x *∑(n,k=0) C(k,n)*sin(x+kπ/2)
用莱布尼茨公式即可,答案如图所示