高次的三角函数的原函数一般都是通过不断地将次,然后进行积分的。不过可以通过记下sinx和cosx的高次函数的积分公式,帮助快速解题。公式如下:
三角函数积分公式表为:(1)∫sinxdx=-cosx+C;∫cosxdx=sinx+C;(2)∫tanxdx=ln|secx|+C;∫cotxdx=ln|sinx|+C;∫secxdx=ln|secx+tanx|+C;∫cscxdx=ln|cscx_cotx|+C;(3)∫sin_xdx=1/2x-1/4sin2x+C;∫cos_xdx=1/2+1/4sin2x+C;∫tan_xdx=tanx-x+C;∫cot_xdx=-...
这是一个很有用的公式,公式是这样的:∫(0,π) xf(sinx)dx=π/2∫(0,π) f(sinx)dx 整个证明过程如下
基本公式 1、∫0dx=c 2、∫x^udx=(x^u+1)/(u+1)+c 3、∫1/xdx=ln|x|+c 4、∫a^xdx=(a^x)/lna+c 5、∫e^xdx=e^x+c 6、∫sinxdx=-cosx+c 7、∫cosxdx=sinx+c 8、∫1/(cosx)^2dx=tanx+c 9、∫1/(sinx)^2dx=-cotx+c 不定积分:不定积分的积分公式主要有如下几...
反三角函数的积分基本都是用分部积分的方法求出来的。基本的四个反三角函数的积分如下: