向量a平行向量b的公式和垂直公式分别为:两个向量a,b平行:a=λb (b不是零向量);两个向量垂直:数量积为0,即 a•b=0,坐标表示:a=(x1,y1),b=(x2,y2),a//b当且仅当x1y2-x2y1=0,a⊥b当且仅当x1x2+y1y2=0。向量的垂直公式为:a⊥b的充要条件是a·b=0,即(x1...
1、向量垂直公式。向量a=(a1,a2),向量b=(b1,b2)。a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb(λ是一个常数)。a⊥b:a1b1+a2b2=0。2、向量平行公式。向量a=(x1,y1),向量b=(x2,y2)。x1y2-x2y1=0。a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0。二、向量简介。
设向量a=(x1,y1),向量b=(x2,y2)。若向量a与向量b平行,则x1y2=x2y1;若向量a与向量b垂直,则x1x2+y1y2=0。向量的平行和垂直条件在数学中是非常基础且重要的概念。了解这些条件有助于我们更好地理解向量之间的关系。具体来说,当两个向量平行时,它们的方向相同或相反,而垂直则意味着...
两个向量a,b平行:a=λb(b不是零向量);两个向量垂直:数量积为0,即a•b=0。坐标表示:a=(x1,y1),b=(x2,y2),a//b当且仅当x1y2-x2y1=0,a⊥b当且仅当x1x2+y1y2=0。共线向量与平行向量关系 由于任何一组平行向量都可移到同一直线上,故平行向量也叫做共线向量。平行...
若向量a与向量b垂直,则垂直公式为x1x2+y1y2=0。1、平行向量:也叫共线向量,方向相同或相反的非零向量。向量平行(共线)充要条件的两种形式 :(1) ;(2) 。2、垂直向量:通常用符号“⊥”表示。向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。