高数中的十大定理公式?

高等数学十大定理公式有有界性、 最值定理、零点定理、费马定理、 罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。1、有界性 |f(x)|≤K 2、 最值定理 m≤f(x)≤M 3、 介值定理 若m≤μ≤M,∃ ξ∈[a,b],使f(ξ)=μ 4、零点...
高数中的十大定理公式?
高等数学十大定理公式有有界性、 最值定理、零点定理、费马定理、 罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。

1、有界性
|f(x)|≤K
2、 最值定理
m≤f(x)≤M
3、 介值定理
若m≤μ≤M,∃ ξ∈[a,b],使f(ξ)=μ
4、零点定理
若 f(a)⋅f(b)<0∃ ξ∈(a,b) ,使f(ξ)=0
5、费马定理
设f(x)在x0处:1,可导 2,取极值,则f′(x0)=0
6、 罗尔定理
若f(x)在[a,b] 连续,在(a,b) 可导,且f(a)=f(b) ,则 ∃ ξ∈(a,b) ,使得f′(ξ)=0
7、拉格朗日中值定理
若f(x)在[a,b] 连续,在(a,b) 可导,则∃ ξ∈(a,b) ,使得 f(b)−f(a)=f′(ξ)(b−a)
8、柯西中值定理
若f(x)、g(x)在[a,b] 连续,在(a,b) 可导,且g′(x)≠0 ,则
∃ ξ∈(a,b) ,使得 f(b)−f(a)g(b)−g(a)=f′(ξ)g′(ξ)

9、泰勒定理(泰勒公式)
n阶带皮亚诺余项:条件为在$x_0$处n阶可导
$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o((x-x_0)^n)\ ,x\xrightarrow{} x_0$
n阶带拉格朗日余项:条件为 n+1阶可导
$f(x)=f(x_0)f'(x_0)(x-x_0)+\dfrac{f''(x_0)}{2!}(x-x_0)^2+...+\dfrac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\dfrac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\ ,x\xrightarrow{} x_0$
10、积分中值定理(平均值定理)
若 f(x)在 [a,b] 连续,则∃ ξ∈(a,b),使得 ∫baf(x)dx=f(ξ)(b−a)
2023-01-13
mengvlog 阅读 7 次 更新于 2025-08-20 21:47:41 我来答关注问题0
  •  海南加宸 高数中的十大定理是什么?

    高等数学十大定理公式包括:罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理、费马定理、洛必达法则、积分中值定理、微积分基本定理、斯托克斯公式和格林公式。罗尔定理:如果函数f(x)在闭区间[a,b]上连续,在开区间(a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a,b),使得f'...

  • 高等数学十大定理公式有有界性、 最值定理、零点定理、费马定理、 罗尔定理、拉格朗日中值定理、柯西中值定理、泰勒定理(泰勒公式)、积分中值定理(平均值定理)。1、有界性 |f(x)|≤K 2、 最值定理 m≤f(x)≤M 3、 介值定理 若m≤μ≤M,∃ ξ∈[a,b],使f(ξ)=μ 4、零点...

  •  翡希信息咨询 高数十大定理

    高数中的十大定理包括:零点定理:内容:若函数f在闭区间[a,b]上连续,且f与f异号,则至少存在一个ξ∈,使得f=0。应用:在求解方程时具有重要应用。最值定理:内容:若函数f在闭区间[a,b]上连续,则函数f在该区间上一定存在最大值和最小值,且这两个值分别在区间上达到。应用:对于优化问题...

  •  湖北倍领科技 高数十大定理

    在高等数学中,零点定理、最值定理、介值定理等定理是极其重要的基础理论,它们为解决数学问题提供了强有力的工具。零点定理指出,若函数f(x)在闭区间[a,b]上连续,且f(a)与f(b)异号,则至少存在一个ξ∈(a,b),使得f(ξ)=0。这一定理在求解方程时具有重要应用。最值定理则描述了在闭区间...

  •  crs0723 高数马勒戈壁定理是什么?

    高数马勒戈壁定理是费马定理、泰勒公式、拉格朗日定理、罗必达法则。费马定理:当整数n >2时,关于x, y, z的方程 x^n + y^n = z^n 没有正整数解。泰勒公式:可以用若干项连加式来表示一个函数,这些相加的项由函数在某一点的导数求得。拉格朗日定理:存在于多个学科领域中,分别为:微积分中的...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部