二阶微分方程的3种通解公式如下:第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。举例说明求微分方程2y+y-y=0的通解。先求对应...
第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。拓展:二阶常系数线性微分方程是形如y''+py'+qy=f(x)的微分方程,其中p,q是...
三种类型的二阶微分方程通解公式如下:1. y = C1cos(2x) + C2sin(2x) - xsin(2x)这是最常见的二阶微分方程通解形式,其中C1和C2是常数。这个公式是通过解对应的齐次方程(即没有非齐次项的方程)得到的,然后通过非齐次方程的一个特解来构造出整个非齐次方程的通解。2. Y = C1e^(x/2) +...
二阶微分方程的3种通解公式是y=C1cos2x+C2sin2x-xsin2x,n阶微分方程就带有n个常数,Y=C1 e^(x/2)+C2 e^(-x)。第一种是由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是y=C1cos2x+C2sin2x-xsin2x。第二种是通解是一个解集包含了所有...
第一种:由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是:y=C1cos2x+C2sin2x-xsin2x。第二种:通解是一个解集……包含了所有符合这个方程的解;n阶微分方程就带有n个常数,与是否线性无关;通解只有一个,但是表达形式可能不同,y=C1y1(x)+C2...