同余定理:核心口诀:余同取余,和同加和,差同减差,公倍数作周期。余同:“一个数除以4余1,除以5余1,除以6余1”,则取1,表示为60+1。和同:“一个数除以4余3,除以5余2,除以6余1”,则取7,表示为60+7。差同:“一个数除以4余1,除以5余2,除以6余3”,则取-3,表示为60...
同余定理核心口诀:余同取余,和同加和,差同减差,最小公倍数作周期。余同:“一个数除以4余1,除以5余1,除以6余1”,则取1,表示为60+1。和同:“一个数除以4余3,除以5余2,除以6余1”,则取7,表示为60+7。差同:“一个数除以4余1,除以5余2,除以6余3”,则取-3,表示为...
家长和孩子可以记住“差同减差,和同加和,余同取余,最小公倍n倍加”的口诀,帮助解决同余问题。
“差同减差,和同加和,余同取余,最小公倍加”这是同余问题的口诀。所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。1、差同减差:用一个数除以几...
[华图名师点评一]同余问题核心口诀:余同取余,和同加和,差同减差,公倍数做周期。[解二] 4、5、9的最小公倍数是180,所以每180个相邻的整数中,恰好有一个数满足“除以9余7,除以5余2,除以4余3”。而三位数(100~999)共有900个整数,根据900÷180=5,得到5个数最终满足条件,...