同余定理:核心口诀:余同取余,和同加和,差同减差,公倍数作周期。余同:“一个数除以4余1,除以5余1,除以6余1”,则取1,表示为60+1。和同:“一个数除以4余3,除以5余2,除以6余1”,则取7,表示为60+7。差同:“一个数除以4余1,除以5余2,除以6余3”,则取-3,表示为60...
家长和孩子可以记住“差同减差,和同加和,余同取余,最小公倍n倍加”的口诀,帮助解决同余问题。
同余定理核心口诀:余同取余,和同加和,差同减差,最小公倍数作周期。余同:“一个数除以4余1,除以5余1,除以6余1”,则取1,表示为60+1。和同:“一个数除以4余3,除以5余2,除以6余1”,则取7,表示为60+7。差同:“一个数除以4余1,除以5余2,除以6余3”,则取-3,表示为...
“差同减差,和同加和,余同取余,最小公倍n倍加”。这句口诀有助于在解题时启发思路,快速找到解题方法。综上所述,同余定理是数学中一个重要的工具,它可以帮助我们简化计算,解决一些看似复杂的问题。在解题时,要灵活运用同余的性质,结合题目条件进行推理和计算。
【口诀】:岁差不会变,同时相加减。岁数一改变,倍数也改变。抓住这三点,一切都简单。例1:小军今年8岁,爸爸今年34岁,几年后,爸爸的年龄的小军的3倍?岁差不会变,今年的岁数差点34-8=26,到几年后仍然不会变。已知差及倍数,转化为差比问题。26/(3-1)=13,几年后爸爸的年龄是13X3=39岁...