1. 第一问的解法口诀:鸡兔同笼计算简,假设都是兔儿连。实际脚数比一比,鸡换兔来兔换鸡,差值相除算鸡数。2. 第二问的解法口诀:鸡兔同笼别混淆,假设多余记心间。实际脚数比一比,多换少来少换多,差值除以足和少,答案自然现。3. 已知鸡兔总数及脚数,求各自数量的题,称为鸡兔同笼...
鸡兔同笼公式解法1(兔的脚数×总只数–总脚数)÷(兔的脚数–鸡的脚数)=鸡的只数;总只数–鸡的只数=兔的只数。解法2(总脚数–鸡的脚数×总只数)÷(兔的脚数–鸡的脚数)=兔的只数;总只数-兔的只数=鸡的只数。解法3总脚数÷2—总头数=兔的只数;总只数—兔的只数=鸡的只数。
口诀:假设全是鸡,假设全是兔。多了几只脚,少了几只足?除以脚的差,便是鸡兔数。举例:鸡免同笼,有头36 ,有脚120,求鸡兔数。求兔时,假设全是鸡,则免子数=(120-36×2)÷(4-2)=24 求鸡时,假设全是兔,则鸡数 =(4×36-120)÷(4-2)=12 口诀:和加上差,越...
鸡兔同笼问题的口诀是:“头数乘以2,再减去总脚数,结果除以2,便是兔子数;总数减去兔子数,便是鸡的数目。”这个口诀简洁而有效地帮助解决鸡兔同笼问题,这是一个经典的数学问题,其中给定一定数量的鸡和兔子在同一个笼子里,我们只能看到他们的头和脚,目标是确定每种动物的数量。首先...
鸡兔同笼口诀简单易懂:一二四,不两四;鸡加兔,凑双数;若求鸡,兔减去;若求兔,鸡增加。口诀的含义是:如果总数量为1、2或4,那么无法确定鸡和兔子的具体数量;如果总数量是双数,那么鸡和兔子的数量相加就是总数的一半;如果要求知道鸡的数量,将总数减去兔子的数量;如果要求知道兔子的数量,将...