不定积分计算公式话题讨论。解读不定积分计算公式知识,想了解学习不定积分计算公式,请参与不定积分计算公式话题讨论。
不定积分计算公式话题已于 2025-08-26 17:52:46 更新
方法一:(最推荐的标准,常用公式)∫ cscx dx =∫ cscx * (cscx-cotx)/(cscx-cotx) dx =∫ (csc^2x-cscx cotx)/(cscx-cotx) dx =∫ [(-cscx cotx dx)+(csc^2x dx)]/(cscx-cotx)=∫ [d(cscx)-d(cotx)]/(cscx-cotx)=∫ d(cscx-cotx)/(cscx-cotx)=ln(cscx-cotx)+C 方法二...
不定积分:不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、...
1、不定积分,indefinite integral,就是将积分中的一部分 做一个代换,当成一个新的变量;换元法 = 变量代换法 = substitution 2、分部积分法,integral by parts 是由积的求导法则推导出来的积分法,由先对一部分积分,然后对另一部分积分。3、分别列举两例如下:(图片均可点击放大,放大后更加清...
具体计算公式参照如图:积分基本公式 1、∫0dx=c 2、∫x^udx=(x^u+1)/(u+1)+c 3、∫1/xdx=ln|x|+c 4、∫a^xdx=(a^x)/lna+c 5、∫e^xdx=e^x+c 6、∫sinxdx=-cosx+c 7、∫cosxdx=sinx+c 8、∫1/(cosx)^2dx=tanx+c 9、∫1/(sinx)^2dx=-cotx+c ...
可以拆成两项,第二项再用分部积分法化简计算。具体解法如下:
udv=uv-vdu公式如下:这个公式属于“分布积分公式”。一般而言,所谓的分布积分计算公式是∫udv =uv-∫vdu。通常是由两个基本初等函数复合而成,相当于将其中一个初等函数(次级函数)镶嵌在另外一个初等函数中。分部积分法的一个关键是将一个不定积分的被积函数转换成一个函数u和另一个函数v的导数的...
不定积分的公式如下:∫ a dx = ax + C,a和C都是常数;∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1;∫ 1/x dx = ln|x| + C;∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1;∫ e^x dx = e^x + C;∫ cosx dx = sinx...
1、公式法 例如∫x^ndx=x^(n+1)/(n+1)+C ∫dx/x=lnx+C ∫cosxdx=sinx 等不定积分公式都应牢记,对于基本函数可直接求出原函数。2、换元法 对于∫f[g(x)]dx可令t=g(x),得到x=w(t),计算∫f[g(x)]dx等价于计算∫f(t)w'(t)dt。 例如计算∫e^(-2x)dx时令t=-2x,则x=-...
【求解思路】1、运用分部积分法公式,将e^(- x)看成v,sinx看成u,则dv=-d(e^(- x)),du=-cosxdx 2、合并同类项(同一表达式),因为左边和右边,都有 ,合并后得到结果。【求解过程】【本题知识点】1、不定积分。设f(x)在某区间I上有定义,如果存在函数F(x),使得对于任一x∈I,成立F...
不定积分公式的推导过程各不相同,推导过程如下:1、∫1dx=x+C(C为常数)推导过程:设f(x)=1,根据定义,f(x)的原函数为F(x)=x+C,即∫1dx=x+C。2、∫cosxdx=sinx+C(C为常数)推导过程:设f(x)=cosx,根据定义,f(x)的原函数为F(x)=sinx+C,即∫cosxdx=sinx+C。3...