等比例数列求和的公式话题讨论。解读等比例数列求和的公式知识,想了解学习等比例数列求和的公式,请参与等比例数列求和的公式话题讨论。
等比例数列求和的公式话题已于 2025-08-22 20:51:59 更新
等比数列求和公式:等比数列通项公式 an=a1×q^(n-1)推广式:an=am×q^(n-m)等比数列求和公式 Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)=a1(q^n-1)/(q-1)(q≠1)(q为公比,n为项数)等比数列求和公式推导 (1)Sn=a1+a2+a3+...+an(公比为q)(2)q*Sn...
a2+a3+...+an=[a1+a2+...+a(n-1)]*q 即 Sn-a1=(Sn-an)*q,即(1-q)Sn=a1-an*q 当q≠1时,Sn=(a1-an*q)/(1-q) (n≥2)当n=1时也成立.当q=1时Sn=n*a1 所以Sn= n*a1(q=1) ;(a1-an*q)/(1-q) (q≠1)。二、等比数列求和公式推导 错位相减法 Sn=a1+...
等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)。等差数列求和公式:Sn=na1+n(n-1)d/2。等比数列性质:若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;在等比数列中,依次每k项之和仍成等比数列。性质:①若 m、n、p、q∈N,且m+n=p+q,则aman=apaq;②在等比数列中,依...
等比数列求和公式:(1)q≠1时,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)(2)q=1时,Sn=na1。(a1为首项,an为第n项,q为等比)Sn=a1(1-q^n)/(1-q)的推导过程:Sn=a1+a2+……+an q*Sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1)Sn-q*Sn=a1-a(n+1)=a1-a1*q...
求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等,其通项公式为 ,任意两项 , 的关系为 ;在运用等比数列的前n项和时,一定要注意讨论公比q是否为1。其他公式:(1)定义式:(2)等比中项:若 ,那么 为 等比中项...
等比例求和的公式为:S=a1+a2+a3+...+an。在等比例求和的公式中,S表示求和结果,a1,a2,a3,…,an表示等比例序列中依次的项。等比例数列的通项公式为:an=a1*q^(n-1),其中a1表示首项,q表示公比,n表示项数。将通项公式代入求和公式中,我们可以得到:S=a1+a1q+a1q^2+...+a1*q...
等比数列的前n项和 Sn、S2n-Sn、S3n-S2n成等比数列,公比为q^n。证明如下:设等比数列{an}的公比为q,an=a1q^(n-1)am=a1q^(m-1)两式相除得an/am=q^(n-m),∴an=amq^(n-m)。S2n=a1+a2+...+an+a(n+1)+a(n+2)+...+a2n=Sn+(a1q^n+a2q^n+...+anq^n)=Sn+(a1+...
有限项求和公式:当公比 $q neq 1$ 时,等比数列的前n项和 $S_n$ 为:$S_n = frac{a_1}{1 q}$。其中,$a_1$ 是首项,$q$ 是公比,$n$ 是项数。无限项求和公式:当 $|q| < 1$ 时,等比数列的无限项和 $S{infty}$ 为:**$S{infty} = frac{a_1}{1 q}$**。这个...
等比数列求和公式为Sn=a1(1-q^n)/(1-q)。1、等比数列常用公式。等比数列是指一个数列中每个数与它的前一个数的比例都相等的数列。其公式为:an=a1× r^(n-1)。其中,an是数列的第n项,a1是数列的第1项,r是固定的比例系数,n是项数。而等比数列的前n项和公式为:Sn=a1×(1-r^n)/...
等比数列求和公式为: 当公比r不等于1时,S = a1 / ,其中a1是首项,r是公比,S是数列的和,n是项数。 当公比r等于1时,S = na1,即数列和为项数n与首项a1的乘积。推导过程如下:基础设定:假设等比数列有n项,首项为a1,公比为r。数列的和记作S,即S = a1 + a1×r + a1×r^2 +...