等比数列的通项公式是:An=A1*q^(n-1)等差数列公式an=a1+(n-1)d 前n项和公式为:Sn=na1+n(n-1)d/2 Sn=(a1+an)n/2 若m+n=p+q则:存在am+an=ap+aq 若m+n=2p则:am+an=2ap 以上n均为正整数 同角三角函数的基本关系式 倒数关系:商的关系:平方关系:tanα ·cotα=1 ...    
谁 能给我说一下解三角函数和等比数列和等差数列的公式 急 下周就考试了
    等比数列的通项公式是:An=A1*q^(n-1)
等差数列公式an=a1+(n-1)d
  前n项和公式为:Sn=na1+n(n-1)d/2
  Sn=(a1+an)n/2
  若m+n=p+q则:存在am+an=ap+aq
  若m+n=2p则:am+an=2ap
  以上n均为正整数
同角三角函数的基本关系式
倒数关系:
商的关系:
平方关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
诱导公式
sin(-α)=-sinα
cos(-α)=cosα tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
              tanα+tanβ
tan(α+β)=——————
             1-tanα ·tanβ
              tanα-tanβ
tan(α-β)=——————
             1+tanα ·tanβ
2tan(α/2)
sinα=——————
       1+tan2(α/2)
       1-tan2(α/2)
cosα=——————
       1+tan2(α/2)
       2tan(α/2)
tanα=——————
      1-tan2(α/2)
半角的正弦、余弦和正切公式
三角函数 的降幂公式
三角函数的降幂公式 半角的正弦、余弦和正切公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
         2tanα
tan2α=—————
        1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
       3tanα-tan3α
tan3α=——————
        1-3tan2α
三角函数的和差化积公式
三角函数的积化和差公式
                 α+β       α-β
sinα+sinβ=2sin—--·cos—-—
                  2          2
                 α+β       α-β
sinα-sinβ=2cos—--·sin—-—
                  2          2
                 α+β       α-β
cosα+cosβ=2cos—--·cos—-—
                  2          2
                   α+β       α-β
cosα-cosβ=-2sin—--·sin—-—
                    2          2            1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
           2
           1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
           2
           1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
           2
              1
sinα ·sinβ=- -[cos(α+β)-cos(α-β)]
              22011-12-04
通项公式:   An=A1+(n-1)d   An=Am+(n-m)d   等差数列的前n项和:   Sn=[n(A1+An)]/2; Sn=nA1+[n(n-1)d]/2   等差数列求和公式: 等差数列的和=(首数+尾数)*项数/2;   项数的公式: 等差数列的项数=[(尾数-首数)/公差]+1.   化简得(n-1)an-1-(n-2)an=a1,这对于任一N均成立   当n取n-1时式子变为,(n-3)an-1-(n-2)an-2=a1=(n-2)an-(n-1)an-1   得   2(n-2)an-1=(n-2)*(an+an-2)   当n大于2时得2an-1=an+an-2 显然证得它是等差数列   和=(首项+末项)×项数÷2   项数=(末项-首项)÷公差+1   首项=2和÷项数-末项   末项=2和÷项数-首项   末项=首项+(项数-1)×公差   性质:   若 m、n、p、q∈N   ①若m+n=p+q,则am+an=ap+aq   ②若m+n=2q,则am+an=2aq   注意:上述公式中an表示等差数列的第n项。   求和公式   Sn=(a1+an)n/2   Sn=n(2a1+(n-1)d)/2; d=公差   Sn=An2+Bn; A=d/2,B=a1-(d/2)
等比数列的通项公式: an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0) 
等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时,Sn= Sn= 
有关等差、等比数列的结论 
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。 
2、等差数列{an}中,若m+n=p+q,则 
3、等比数列{an}中,若m+n=p+q,则 
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列 
{an bn}、 、 仍为等比数列。 
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 
9、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d2011-12-04
你看教科书吧。
这里结算单个题目比教科书好,可是整个系统的公式却不如你教科书可靠。2011-12-04