二阶微分方程的3种通解公式如下:第一种:两个不相等的实根:y=C1e^(r1x)+C2e^(r2x)。第二种:两根相等的实根:y=(C1+C2x)e^(r1x)。第三种:一对共轭复根:r1=α+iβ,r2=α-iβ:y=e^(αx)*(C1cosβx+C2sinβx)。举例说明求微分方程2y+y-y=0的通解。先求对应...
微分方程的通解公式:1、一阶常微分方程通解:dydx+p(x)y=0dydx+p(x)y=0.2、齐次微分方程通解:y=ce−∫p(x)dx。3、非齐次微分方程通解:y=e−∫p(x)dx(c+∫q(x)e∫p(x)dxdx)。4、二阶常系数齐次线性微分方程通解:y′′+py′+qy=0(∗),其中p...
二阶微分方程的3种通解公式是y=C1cos2x+C2sin2x-xsin2x,n阶微分方程就带有n个常数,Y=C1 e^(x/2)+C2 e^(-x)。第一种是由y2-y1=cos2x-sin2x是对应齐方程的解可推出cos2x、sin2x均为齐方程的解,故可得方程的通解是y=C1cos2x+C2sin2x-xsin2x。第二种是通解是一个解集包含了所有...
微分方程的通解公式:y=y1+y* = 1/2 + ae^(-x) +be^(-2x),其中:a、b由初始条件确定,例:y''+3y'+2y = 1,其对应的齐次方程的特征方程为s^2+3s+2=0,因式分(s+1)(s+2)=0,两个根为:s1=-1 s2=-2。y''+py'+qy=0,等式右边为零,为二阶常系数齐次线性方程;y''+...
二阶微分方程的通解公式:y''+py'+qy=f(x),其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y''+py'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的。若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+p...