所谓的换底公式就是log(a)(b)=log(n)(b)/log(n)(a).换底公式的推导过程:若有对数 log(a)(b)设a=n^x,b=n^y 则 log(a)(b)=log(n^x)(n^y)根据 对数的基本公式log(a)(M^n)=nlog(a)(M)和 基本公式log(a^n)(M)=1/n×log(a)(M)易得 log(n^x)(n^y)=y/x 由...
用对数的定义推导出换底公式的过程见下图
loga(b) = logc(b) / log_c(a),其中 a, b 是正实数,c 是正实数且不等于 1。这个公式允许我们将对数转换为使用任意底数的对数。要将一个对数化为同底数,我们可以选择一个新的底数,然后使用换底公式进行转换。例如,如果要将 log_2(8) 转换为以底数 10 的对数,我们可以将其转换为:log...
第四步、loga b * logb c= loga b*(loga c)/(loga b)
对数换底公式:log(a)b=log(n)b/log(n)a 证明:设 log(a)b=x,则 a^x=b 两边同时取以n为底的对数,得:log(n)a^x=log(n)b xlog(n)a=log(n)b x=log(n)b/log(n)a 所以 log(a)b=log(n)b/log(n)a。