两个向量相乘后的方向向量叫向量积,它的大小等于这两个向量的绝对值与它们夹角正弦的乘积,方向由右手定则确定,具体方法是右手拇指与其余四指垂直,握拳时四指运动的方向表示从第一向量到第二向量,拇指所指方向就是向量积的方向。如果向量是用坐标表示的,则可用行列式计算。(注意:向量a×向量b=-向...
向量相乘有两种方式,即内积(数量积)和外积(叉积)。对于内积,计算公式如下:1、对于二维向量:A=(x1,y1),B=(x2,y2),A与B的内积(数量积)为:x1x2+y1y2。对于三维向量:A=(x1,y1,z1),B=(x2,y2,z2),A与B的内积(数量积)为:x1x2+y1y2+z1*z2。内积的结...
向量a乘以向量b=(向量a得模长)乘以(向量b的模长)乘以cosα[α为2个向量的夹角];向量a(x1,y1)向量b(x2,y2),向量a乘以向量b=(x1*x2,y1*y2)。定义:向量a*b=绝对值里面的向量a*绝对值里面的向量b*cos(两个向量的夹角)=两个向量的模*两个向量夹角的余弦。两个向量a和b的向量...
公式为: a·b=|a||b|cos 当两个向量垂直,所以<a,b>=90度,cos90度=0,所以两个向量垂直,相乘等于0 当两个向量平行,所以<a,b>=180度,cos180度=1,所以两个向量平行,他们相乘就是等于这两个向量的模长相乘,而且如果方向向同结果为正,方向不同结果为负。拓展:向量的乘法...
向量相乘有两种主要形式:数量积(点乘)和向量积(叉乘)。一、数量积(点乘)公式:若向量a=(x1,y1),向量b=(x2,y2),则a与b的数量积为a·b=x1x2+y1y2。同时,数量积也可以表示为|a||b|cosθ,其中θ是向量a与向量b之间的夹角。意义:数量积的结果是一个标量(即没有方向的数值),...