等比数列求和公式:等比数列通项公式 an=a1×q^(n-1)推广式:an=am×q^(n-m)等比数列求和公式 Sn=n×a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q)=a1(q^n-1)/(q-1)(q≠1)(q为公比,n为项数)等比数列求和公式推导 (1)Sn=a1+a2+a3+...+an(公比为q)(2)q*Sn...
等比公式:a (n+1)/an=q (n∈N)。通项公式:an=a1×q^(n-1),推广式:an=am×q^(n-m); 求和公式:Sn=n*a1 (q=1),Sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1),(q为比值,n为项数)。如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个...
1)等比数列:a(n+1)/an=q,n为自然数。(2)通项公式:an=a1*q^(n-1);推广式:an=am·q^(n-m);(3)求和公式:Sn=n*a1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-a1q^n)/(1-q)=a1/(1-q)-a1/(1-q)*q^n (即a-aq^n)(前提:q不等于 1)(4)性质:①若 m、n...
(1)等比数列的通项公式是:An=A1×q^(n-1)。若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。(2) 任意两项am,an的关系为an=am·q^(n-m)。(3)从等比数列的定义、通项公式、前n项和公式可以...
解答无穷等比数列的和,首先需要理解等比数列的定义。等比数列是由各相邻项之比为常数的数列。设等比数列的第一项为a1,公比为q,则其通项公式为an=a1*q^(n-1)。接着,我们考虑有限的等比数列前n项和S。根据等比数列的性质,可以得到其前n项和的公式为Sn=a1*(1-q^n)/(1-q)。这里,a1为...