初一数学欧拉公式是: R+ V- E= 2。在任何一个规则球面地图上,用 R记区域个 数,V记顶点个数,E记边界个数,则 R+ V- E= 2,这就是欧拉定理,它于 1640年由 Descartes首先给出证明,后来 Euler(欧拉 )于 1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称为 Descartes定理。
欧拉公式欧拉恒等式,它是数学里最令人着迷的公式之一,它将数学里最重要的几个常数联系到了一起:两个超越数自然对数的底e,圆周率π,两个单位,虚数单位i和自然数的单位1,以及数学里常见的0。因此,数学家们评价它是上帝创造的公式,我们只能看它而不能理解它。欧拉恒等式是指下列关系式 eiπ+1...
(2)复变函数论里的欧拉公式:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2...
利用“欧拉公式”1+1/2+1/3+……+1/n=ln(n)+C,(C为欧拉常数)Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)=ln[2*3/2*4/3*…*(n+1)/n]=ln(n+1)
欧拉公式:点数+面数-棱数=2 如:长方体:8点6面12条棱,8+6-12=2 n棱锥:点+面-棱=(n+1)+(n+1)-2n=2 n棱柱:点+面-棱=2n+(n+2)-3n=2