二元一次方程的求根公式是什么?

设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a
二元一次方程的求根公式是什么?
二元一次方程求解公式如下:
设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a

扩展资料:
韦达定理在求根的对称函数,讨论二次方程根的符号、解对称方程组以及解一些有关二次曲线的问题都凸显出独特的作用。
一元二次方程的根的判别式为(a,b,c分别为一元二次方程的二次项系数,一次项系数和常数项)。韦达定理与根的判别式的关系更是密不可分。
根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。
利用韦达定理可以快速求出两方程根的关系,韦达定理应用广泛,在初等数学、解析几何、平面几何、方程论中均有体现。
参考资料来源:百度百科-韦达定理
2023-08-03
mengvlog 阅读 33 次 更新于 2025-10-07 10:28:08 我来答关注问题0
  •  科技特别会 二元一次方程有实数根吗?怎么判断的?

    二元一次方程一般形式为:ax + b = 0,其中a和b为已知常数,x为未知数。判别式(Δ,读作"delta")用于判断方程的根的情况,其计算公式为:Δ = b^2 - 4ac 根据判别式的值,可以得出以下结论:1. 当Δ > 0时,方程有两个不相等的实数根。2. 当Δ = 0时,方程有两个相等的实数根(也...

  • 设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a

  • 求根公式为:x=(-b±√(b²-4ac))/2a 。

  •  斋雨凝0fX 二元一次方程的求根公式,及其推导过程?

    二元一次方程为:ax^2+bx+c=0,其中a不为0;求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a 推导过程如下:对ax^2+bx+c=0进行配方,得到(x+b/2a)^2—(b^2-4ac)/4a^2=0 移项开方就得到了求根公式 ...

  • 二元一次方程的求解是数学中的基础内容,其形式为ax2+bx+c=0,其中a不为0。方程的解,即求根公式为x1=(-b+(b2-4ac)1/2)/2a,x2=(-b-(b2-4ac)1/2)/2a。推导过程如下:首先对原方程ax2+bx+c=0进行配方处理,将方程转化为(x+b/2a)2—(b2-4ac)/4a2=0的形式。接着,移项并...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部