展开式公式有哪些

1+x的n次方展开式公式是:(x-1)^n=Cn0x^n+Cn1x^(n-1)(-1)^1+Cn2x^(n-2)(-1)^2+……+Cn(n-1)x(-1)^(n-1)+Cnn(-1)^n(x+1)^n。性质 (1)项数:n+1项。(2)第k+1项的二项式系数是C。(3)在二项展开式中,与首末两端等距离的两项的二项式系数...
展开式公式有哪些
1+x的n次方展开式公式是:(x-1)^n=Cn0x^n+Cn1x^(n-1)(-1)^1+Cn2x^(n-2)(-1)^2+……+Cn(n-1)x(-1)^(n-1)+Cnn(-1)^n(x+1)^n。
性质
(1)项数:n+1项。
(2)第k+1项的二项式系数是C。
(3)在二项展开式中,与首末两端等距离的两项的二项式系数相等。
(4)如果二项式的幂指数是偶数,中间的一项的二项式系数最大,如果二项式的幂指数是奇数,中间两项的的二项式系数最大,并且相等。

泰勒中值定理:
若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x0)多项式和一个余项的和。
f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2,+f'''(x0)/3!*(x-x0)^3+……+f(n)(x0)/n!*(x-x0)^n+Rn(x)。
其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x0)^(n+1),这里ξ在x和x0之间,该余项称为拉格朗日型的余项。
使用Taylor公式的条件是:f(x)n阶可导。其中o((x-x0)^n)表示比无穷小(x-x0)^n更高阶的无穷小。
Taylor公式最典型的应用就是求任意函数的近似值。Taylor公式还可以求等价无穷小,证明不等式,求极限等。
2022-10-24
mengvlog 阅读 6 次 更新于 2025-08-22 16:56:03 我来答关注问题0
  •  殳念桃2r 几个常用幂级数展开式

    常用的幂级数展开式归纳如下图:

  • 根据二项式定理,多项式的n次方展开公式,如下图所示:其中二项式定理如下图所示:

  •  如意NlXY 十个常用的泰勒展开公式cosx

    十个常用的泰勒展开公式cosx如下:1、零阶展开:cos(x)≈1。2、一阶展开:cos(x)≈1-(x^2/2!)3、二阶展开:cos(x)≈1-(x^2 /2!)+(x^4/4!)4、三阶展开:cos(x)≈1-(x^2/2!)+(x^4/4!)-(x^6/6!)5、四阶展开:cos(x)≈1-(x^2/2!)+(x^4/...

  •  诸葛灵安526 泰勒公式展开式大全?

    1. 函数 f(x) 在点 a 处的泰勒展开式(一阶): f(x) ≈ f(a) + f'(a)(x - a)2. 函数 f(x) 在点 a 处的泰勒展开式(二阶): f(x) ≈ f(a) + f'(a)(x - a) + (1/2)f''(a)(x - a)^23. 函数 f(x) 在点 a 处的泰...

  •  98聊教育 二项式的展开式是什么?

    这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二次展开式,其中的系数Cnr(r=0,1,……n)叫做二次项系数,式中的Cnran-rbr.叫做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:Tr+1=Cnraa-rbr。二项式定理的意义:牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部