数学期望的六个公式如下:1、总和期望公式:E(X+Y)=E(X)+E(Y)。2、乘积期望公式:E(XY)=E(X)×E(Y)。3、方差公式:方差是各个数据与平均值之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],x_为数据的平均数,n为数据的个数。4、协方差公式...
数学期望的公式有两个,分别是:E(aX+bY)=aE(x)+bE(y)E(aX+bY)=aE(x)+bE(y)和(XY)=E(X)+E(Y)E(XY)=E(X)+E(Y)。1、一个常数的期望是这个常数本身,写作E(C)=C。2、一个常数乘以随机变量X的期望,等于这个常数乘以X的期望,写作E(cX)=cE(X)E(cX)=cE(X)。3、随机变量X...
总和期望,乘积期望,定义期望,方差公式,协方差公式和零期望公式。根据百度文库查询得知,1、总和期望公式:定义为任何给定的两个事件X和Y的期望相加的结果,即E(X+Y)=E(X)+E(Y)。2、乘积期望公式:定义为任何给定的两个事件X和Y的期望相乘的结果,即E(XY)=E(X)×E(Y)。3、定义期...
公式:∑ ai(i=1……),∑表示连加,右边写通式,上下标写范围,∑称为连加号,意思为:a1+a2+……+an= n。“i”表示通项公式中i是变量,随着项数的增加而逐1增加 ,“1”表示从i=1时开始变化,上面的“n”表示加到i=n,“ai”是通项公式。性质:∑(cx)=c∑x,c为常数。2、 数学...
数学期望的六个公式包括:离散型随机变量的数学期望公式:$E = sum x_ip_i$,其中$x_i$是随机变量X的可能取值,$p_i$是$x_i$对应的概率。连续型随机变量的数学期望公式:$E = int_{-infty}^{infty} xfdx$,其中$f$是随机变量X的概率密度函数。数学期望的线性性质:$E = aE + b$,...