微积分中求导的公式

1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'大学高等数学中微积分需要用到的求导公式如下图所示:...
微积分中求导的公式
1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlna y=e^x y'=e^x4.y=logax y'=logae/x y=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2
在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'
大学高等数学中微积分需要用到的求导公式如下图所示:

拓展资料:
积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。
公式种类:
不定积分
设 是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2

定积分
积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的实函数f(x),在区间[a,b]上的定积分记为:
若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

参考资料:
积分公式-百度百科
2023-10-23
mengvlog 阅读 7 次 更新于 2025-08-22 09:38:30 我来答关注问题0
  •  二范skr 微积分中常用到哪些求导公式?

    在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y'=f'[g(x)]•g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』2.y=u/v,y'=u'v-uv'/v^23.y=f(x)的反函数是x=g(y),则有y'=1/x'大学高等数学中微积分需要用到的求导公式如下图所示...

  •  翡希信息咨询 【微积分】常用函数求导公式

    微积分中常用函数求导公式如下:一、基本初等函数求导 常数倍乘法则:若函数 f = c·g,其中 c 为常数,则 f’ = c·g’。二、函数的和差积商求导 和差法则:若 f = u ± v,则 f’ = u’ ± v’。 积法则:若 f = u·v,则 f’ = u·v&rs...

  •  校易搜全知道 微积分基本公式(求导、积分、极限)

    3.求导的公式是:f'(x)=lim(h->0)[f(x+h)-f(x)]/h,其中h为极限。4.求导时需要注意函数的连续性和可导性,如果函数在某一点处不连续或不可导,那么在该点处的导数不存在。积分 积分是微积分中的另一个重要概念,它表示函数在某一区间上的面积或体积。积分的操作步骤如下:1.首先,将函...

  •  软软zzzz 微分的公式是什么?

    分部求导公式:d(uv)/dx=(du/dx)v+u(dv/dx)。分步求导积分法:微积分中的一类积分办法:对于那些由两个不同函数组成的被积函数,不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。具体操作如...

  •  甘李柚 导数的四则运算法则

    导数的四则运算法则是(u+v)'=u'+v',(u-v)'=u'-v',(uv)'=u'v+uv',(u÷v)'=(u'v-uv')÷v^2。导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。什么是导数?...

萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部